27 research outputs found

    MRI of Breast Lesions

    Full text link
    In Magnetic Resonance Mammography (MRM) high spatial as well as temporal resolution is of utmost importance for differentiating between malignant and benign lesions. Therefore, a so‐called dynamic technique (i.e., the repetitive imaging of the same slices before and in short time intervals after the injection of contrast medium) is essential to detect the differences in initial enhancements between malignant and benign lesions which are reflected by the tumorangiogenetic vascular network of malignant lesions. This unit presents a basic protocol and several alternate protocols for dynamic MRM.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145284/1/cpmia2101.pd

    Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data

    Get PDF
    Purpose: To investigate the use of four-dimensional (4D) co-occurrence-based texture analysis to distinguish between nonmalignant and malignant tissues in dynamic contrast-enhanced (DCE) MR images. Materials and Methods: 4D texture analysis was performedon DCE-MRI data sets of breast lesions. A model-free neural network-based classification system assigned each voxel a "nonmalignant" or "malignant" label based on the textural features. The classification results were compared via receiver operating characteristic (ROC) curve analysis with the manual lesion segmentation produced by two radiologists (observers 1 and 2). Results: The mean sensitivity and specificity of the classifier agreed with the mean observer 2 performance when compared with segmentations by observer 1 for a 95% confidence interval, using a two-sided t-test with α = 0.05. The results show that an area under the ROC curve (Az) of 0.99948, 0.99867, and 0.99957 can be achieved by comparing the classifier vs. observer 1, classifier vs. union of both observers, and classifier vs. intersection of both observers, respectively. Conclusion: This study shows that a neural network classifier based on 4D texture analysis inputs can achieve a performance comparable to that achieved by human observers, and that further research in this area is warranted. © 2007 Wiley-Liss, Inc

    Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA

    No full text
    Aim: To evaluate the feasibility of fusion of morphologic and functional imaging modalities to facilitate treatment planning, probe placement, probe re-positioning, and early detection of residual disease following radiofrequency ablation (RFA) of cancer. Methods: Multi-modality datasets were separately acquired that included functional (FDG-PET and DCE-MRI) and standard morphologic studies (CT and MRI). Different combinations of imaging modalities were registered and fused prior to, during, and following percutaneous image-guided tumor ablation with radiofrequency. Different algorithms and visualization tools were evaluated for both intra-modality and inter-modality image registration using the software MIPAV (Medical Image Processing, Analysis and Visualization). Semi-automated and automated registration algorithms were used on astandard PC workstation: 1) landmark-based least-squares rigid registration, 2) landmark-based thin-plate spline elastic registration, and 3) automatic voxel-similarity, affine registration. Results: Intra- and inter-modality image fusion were successfully performed prior to, during and after RFA procedures. Fusion of morphologic and functional images provided a useful view of the spatial relationship of lesion structure and functional significance. Fused axial images and segmented three-dimensional surface models were used for treatment planning and post-RFA evaluation, to assess potential for optimizing needle placement during procedures. Conclusion: Fusion of morphologic and functional images is feasible before, during and after radiofrequency ablation of tumors in abdominal organs. For routine use, the semi-automated registration algorithms may be most practical. Image fusion may facilitate interventional procedures like RFA and should be further evaluated

    The implementation of SPHE at post-primary school level: a case study approach.

    Get PDF
    This study was commissioned by the SPHE management committee to examine the contribution of SPHE to the experience of Junior Cycle students and to the Junior Cycle curriculum. Twelve schools were considered as separate units in order to examine the relationship between the various factors that might have an effect on SPHE within schools. The modified case study approach employed in this study used mixed methodologies, including interviews, questionnaires and participatory methods of data collection. These methods elicited a rich variety of opinions from students, teachers, parents and SPHE Support Service staff on their perceptions of SPHE at present and their aspirations for its future
    corecore