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Malignant-Lesion Segmentation Using 4D Co-
Occurrence Texture Analysis Applied to Dynamic
Contrast-Enhanced Magnetic Resonance Breast
Image Data
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Purpose: To investigate the use of four-dimensional (4D)
co-occurrence-based texture analysis to distinguish be-
tween nonmalignant and malignant tissues in dynamic
contrast-enhanced (DCE) MR images.

Materials and Methods: 4D texture analysis was per-
formed on DCE-MRI data sets of breast lesions. A model-
free neural network-based classification system assigned
each voxel a “nonmalignant” or “malignant” label based on
the textural features. The classification results were com-
pared via receiver operating characteristic (ROC) curve
analysis with the manual lesion segmentation produced by
two radiologists (observers 1 and 2).

Results: The mean sensitivity and specificity of the classifier
agreed with the mean observer 2 performance when com-
pared with segmentations by observer 1 for a 95% confidence
interval, using a two-sided t-test with � � 0.05. The results
show that an area under the ROC curve (Az) of 0.99948,
0.99867, and 0.99957 can be achieved by comparing the

classifier vs. observer 1, classifier vs. union of both observ-
ers, and classifier vs. intersection of both observers, re-
spectively.

Conclusion: This study shows that a neural network clas-
sifier based on 4D texture analysis inputs can achieve a
performance comparable to that achieved by human ob-
servers, and that further research in this area is warranted.
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RADIOGRAPH MAMMOGRAPHY is currently regarded
as the standard diagnostic tool for breast cancer detec-
tion. Nevertheless, mammography has an associated
70% tumor detection rate (1), and only 10% to 33% of
suspicious regions found in mammograms are deter-
mined via biopsy to be cancerous (2). The sensitivity of
mammography for breast cancer detection is reduced
when dense fibroglandular breast tissue obscures the
tumor. Since an estimated 30% of women are consid-
ered to have dense breast tissue, mammography is not
always considered reliable (1).

Dynamic contrast-enhanced magnetic resonance im-
aging (DCE-MRI) is an alternative method for diagnos-
ing breast cancer and can be used to monitor the effec-
tiveness of cancer therapies on tumor growth. DCE-
MRI can also be used to distinguish between tumor
types and thus provide a “virtual biopsy.” Also, in con-
trast to radiograph mammography, dense breast tissue
does not interfere with the detection of tumors, and
heterogeneous tumors are easily detectable. DCE-MRI
has been shown to have a sensitivity of 85% to 100%
and a specificity of 35% to 85% (3).

Although DCE-MRI has been shown to be effective in
locating and classifying tumors, analysis of dynamic
MRI data sets is time-consuming. Also, judgments as to
the size, shape, and location of the tumor detected are
influenced to some extent by intra- and interobserver
variability. In this study, we propose a model-free, com-
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puter-aided diagnosis system for performing a voxel-
by-voxel analysis of DCE-MRI data sets to detect ma-
lignant tissues. Classification in this study was
performed by 4D texture analysis along with a neural
network.

Previous studies have applied texture analysis to
medical imaging applications. Tourassi (4) discussed
the role of texture analysis in the study of computer-
aided diagnosis. Tourassi believes that texture analysis
is a good means of extracting features from medical
image data sets because radiologists rely on textures to
make diagnostic decisions. Lerski et al (5) described
how texture analysis can be used to classify tissues,
and showed that texture analysis can be used to seg-
ment brain regions from MR images. Gibbs and Turn-
bull (6) applied co-occurrence-based texture analysis to
postcontrast MR breast images. They were able to show
that benign and malignant lesions differ in terms of the
spatial variations in voxel intensities.

Tzacheva et al (7) proposed a method of detecting
malignant tissues given an input-static, postcontrast,
T1-weighted image slice. Static region descriptors are
calculated, and a neural network classifier is then used
to classify each region as malignant or nonmalignant.
The classification system produced a reported 90% to
100% sensitivity and 91% to 100% specificity. Although
good performance was reported, this system uses re-
gion-based analysis rather than voxel-by-voxel analy-
sis. Also, this system does not take advantage of the
voxel signal intensity changes over the entire DCE-MRI
time sequence.

Lucht et al (8,9) tested a model-free voxel-by-voxel
tissue classification system. The system takes as input
a 28-measurement point normalized time vs. signal in-
tensity curve for a voxel. A neural network is used to
assign one of three labels (carcinoma, benign lesion, or
parenchyma) to the voxel. Discrimination between le-
sion voxels (both malignant and benign) and paren-
chyma voxels produced a performance of 96% sensitiv-
ity and 90% specificity. Discrimination between
malignant lesion voxels and benign lesion voxels pro-
duced a performance of 84% sensitivity and 81% spec-
ificity.

A recent paper by Twellmann et al (10) described a
classifier that combines both supervised and unsuper-
vised techniques, and takes as input the signal inten-
sity vs. time information for a voxel. The classification
results were compared with the results of manual le-
sion segmentation done using the model-based three-
time-point technique (11). A performance analysis
showed that the classifier produced a receiver operating
characteristics (ROC) curve with an area under the
curve (Az) of 0.986 for malignant tissues. Although they
reported good results, Twellmann et al (10) suggested
that the addition of textural features may enhance the
discriminative power of their classifier.

The work presented in this study uses four-dimen-
sional (4D) co-occurrence-based texture analysis to dis-
tinguish between nonmalignant and malignant tissues
from DCE-MR images. With the use of texture analysis,
statistical information regarding the change of voxel
intensities over time is gathered. The textural features
are the input to a model-free neural network-based

classification system that assigns each voxel a “nonma-
lignant” or “malignant” label on a voxel-by-voxel basis.
The system’s classification results are compared via
ROC analysis with the manual lesion segmentation per-
formed by a radiologist using the two-compartment
model. We recognize that interobserver variations occur
during manual segmentation. Therefore, a second radi-
ologist manually marked the lesion as well. We compare
the lesion marked by the second radiologist with the
lesion marked by the first radiologist using the first
radiologist as the ground truth (gold standard). Using
ROC analysis and comparing segmentations, we show
that the neural network classifier achieves a perfor-
mance comparable to that achieved by the second ra-
diologist.

MATERIALS AND METHODS

MRI Acquisition

In this study we retrospectively examined DCE-MRI
data from four women with a total of four malignant
invasive ductal carcinoma (IDC) lesions, and two
women with a total of four benign (BEN) fibrocystic
lesions. We performed all DCE-MRI data set acquisi-
tions and analyses following the approved practices of
our internal review board regarding the use of human
subjects and data. The diagnosis of each lesion was
histologically confirmed by biopsy of the lesion. All MRI
acquisitions were performed on a 1.5 Tesla MR system
(Magnetom Vision; Siemens, Erlangen, Germany). A dy-
namic T1-weighted gradient-echo sequence (TR � 8.1
msec, TE � 4.0 msec, flip angle � 20°) was performed,
and a total of 64 coronal slices (each slice consisting of
256 � 256 pixels) were obtained. Each slice had an
effective slice thickness of 2.5 mm and a field of view
(FOV) of 320 � 320 mm2. The dynamic image sequence
was acquired under the following protocol: Paramag-
netic MultiHance Gd-BOPTA (Bracco Diagnostics Inc.,
Milan, Italy) was used as the contrast agent. A contrast
agent dose of 0.2 mL/kg bodyweight was used, and the
constant bolus injection duration was seven seconds. A
total of six volumes per data set were acquired at six
different time points. The first volume set was acquired
to establish baseline intensity, and another five volume
scans were taken 120 seconds apart to monitor the
uptake and elimination of the contrast agent.

As is typically done in breast MRI, each patient lay
prone in the breast coil with her arms extended above
her head. The breasts were supported in order to re-
duce motion caused by breathing, cardiac, and other
movements. However, some motion due to voluntary,
breathing, cardiac, and breast-settling motions is likely
to occur in such examinations. Although algorithms
(12,13) exist to correct for motion, no registration algo-
rithms were used in this study.

Manual Segmentation by Radiologists

In order to train the neural network-based classifier
and test the efficacy of the classifier, two trained radi-
ologists (observers 1 and 2) performed manual segmen-
tation of the lesions. The segmentations performed by
observer 1 served as the gold standard, and those made
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by observer 2 were used to establish and quantify in-
terobserver variability. Neither radiologist had knowl-
edge of the segmentations made by the other observer.

Manual segmentation was performed using a phar-
macokinetic two-compartment-based analysis tool
(14,15) implemented in IDL (Interactive Data Language,
Boulder, CO, USA). The estimated pharmacokinetic pa-
rameters A and kep were color-coded and superimposed
on the precontrast MR image. The radiologists then
manually outlined the lesions using a computer mouse.
Each lesion was assigned an “IDC” or “BEN” label de-
pending on whether the lesion was malignant or be-
nign. We recognize that some lesions are inhomoge-
neous and have both malignant and benign
characteristics (16,17); however, each lesion was as-
signed only one label by the radiologist.

Texture Analysis

The goal of texture analysis is to quantify the depen-
dencies between neighboring pixels and patterns of
variations in image brightness within a region of inter-
est (ROI) (4,18). In texture analysis, one can obtain
useful information by examining local variations in im-
age brightness. Haralick texture analysis (19) is a form
of statistical texture analysis that utilizes co-occur-
rence matrices to relay the joint statistics of neighbor-
ing spatial or temporal voxels. A second-order joint con-
ditional histogram (also called a co-occurrence matrix)
is computed given a specific distance between pixels
and a specific direction. The two random variables are
the gray level of one pixel (g1) and the gray level of its
neighboring pixel (g2), and the neighborhood between
two pixels is defined by a user-specified distance and
direction. Once a co-occurrence matrix is computed,
statistical parameters can be calculated from the ma-
trix. The 14 textural features described by Haralick et al
(19) provide a wide range of parameters that can be
used in medical imaging analysis.

In medical images, many localized texture changes
denoting tumors, vessels, and different tissues may ex-
ist. Thus, it is often necessary to apply a series of tex-
ture calculations with each calculation performed on a
localized region. 4D texture analysis begins with the
selection of a 4D scanning window. The voxels within
this window are used to generate a co-occurrence ma-
trix, and the matrix is used to generate the Haralick
textural features. For example, a 5 � 5 � 3 � 2 (x, y, z,
t) scanning window would cover a 5 � 5 in-slice region
spread across three coronal slices and two time sam-
ples. The scanning window is moved throughout the 4D
DCE-MRI data set, and textures are computed at each
movement of the window. The window is first moved
along the x-dimension, which is from the left to the right
of the patient. The window is then moved along the
y-dimension (inferior to superior) and then along the
z-dimension (posterior to anterior). Finally, the window
is moved in the t-dimension from precontrast to the
final acquisition in the temporal sequence. Although
texture analysis is a computationally intensive process,
it can be performed quickly and efficiently with the use
of parallel computing (20).

Features Used

Given an input DCE-MRI data set, features may be
extracted that depend on the Haralick feature parame-
ter, scanning window size, and voxel neighbor direction
and distance used for co-occurrence matrix calcula-
tions. First, we always use the direction (0x, 0y, 0z, 1t)
and a distance value of one to generate the co-occur-
rence matrices. Using the (0, 0, 0, 1) direction allows us
to generate co-occurrence matrices based on variations
in image brightness that occur between the same voxel
location at different time samples. This direction is use-
ful for classification because our DCE-MRI data sets are
assumed to be only time-varying. This assumption is
not always accurate, however, since patient motion can
create spatial voxel intensity variations in addition to
the temporal variations.

Next we use our knowledge of the time vs. voxel in-
tensity curves to decide which Haralick textures, scan-
ning windows, and range of time segments to use. A 5 �
5 � 1 � 2 (x, y, z, t) scanning window is used to
calculate the Haralick contrast parameter from consec-
utive time samples. For malignant tissues, the contrast
parameter at time windows starting at t1 and t2 corre-
sponds to contrast agent uptake, and the contrast pa-
rameter starting at t3, t4, and t5 corresponds to contrast
agent elimination. For malignant tissues, these time
windows should have different contrast levels com-
pared to nonmalignant tissues. A 5 � 5 � 1 � 3 scan-
ning window is used for the difference variance and
inverse different moment parameters to gather statis-
tics for contrast agent uptake at the time window start-
ing at t1. A 3 � 3 � 1 � 6 scanning window is used for
the sum of squares (SOS) and difference entropy pa-
rameters. This scanning window accounts for all tem-
poral variations within the scanning window.

In our classification system, we vary the scanning
window size depending on the Haralick parameter
used, which is typically not done in other tissue classi-
fication applications. However, this allows us to focus
the scanning window on a chunk of data that is most
beneficial for classification purposes while maintaining
a scanning window size that does not violate the law of
large numbers when producing a co-occurrence matrix.
The result is a statistically valid co-occurrence matrix
produced by a region of data in which we are specifically
interested. This feature-selection process yields nine
total features that are inputs to the neural network
used to detect malignant tissues.

Training and Classification

The classifier developed in this project is a neural net-
work-based classifier implemented in Matlab (Math-
Works Inc., Natick, MA, USA). A four-layer feed-forward
back-propagation neural network was created using
the Matlab Neural Network Toolbox. The first three lay-
ers each contained nine nodes, and the last layer con-
tained a single node. The network used pure linear
transfer functions and was batch-trained using the
Levenberg-Marquardt algorithm.

The training set consisted of a collection of malignant
(IDC) and nonmalignant (parenchymal and BEN) vox-
els. The IDC training voxels were randomly chosen from
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two IDC lesions as segmented by observer 1. The first
lesion had a higher than average level of enhancement
as compared to the baseline intensity, and the second
lesion had a lower than average level of enhancement.
Therefore, voxels from these two lesions offer a wide
variation of texture parameters corresponding to the
“malignant” label. The “nonmalignant” training voxels
were chosen from a single BEN lesion as segmented by
observer 1. Approximately 10% of the voxels within the
lesions were used for training. Additional nonmalignant
training voxels were taken randomly from the paren-
chymal breast tissue that was not marked as lesion by
observer 1. An approximately equal number of malig-
nant and nonmalignant voxels were used for training.
Once trained, the classifier can be presented with a
pattern of textures for a given voxel. The voxel is then
assigned either a “malignant” or “nonmalignant” label.

Evaluation of Results

After the neural network is trained and a data set is
tested, it is useful to present the results in a fashion
that allows for easy analysis. One approach is to create
a series of output images that depict how the neural
network-classified voxels compare with the radiologist-
marked images. Color-coded output images provide the
user with a quick visual means of determining the per-
formance of the neural network. However, it is often
beneficial to see how voxel classification relates to an-
atomical structures. Thus, when we present classifier
output image results, we superimpose the classifier re-
sults on the anatomical images taken from the DCE-
MRI baseline scan. For our output images we employ
the following color scheme: yellow � true positive (TP),
black/grayscale � true negative (TN), green � false pos-
itive (FP), and red � false negative (FN).

In addition to a visual analysis, a statistical analysis
can also be used to quantify classifier performance. The
TP fraction (TPF) and FP fraction (FPF) are two condi-
tional probabilities that can be calculated for analysis
purposes (21). We define the TPF as the rate at which
the neural network flagged the voxel as being tumor
tissue, when the radiologist marked the voxel as being
tumor tissue (which is similar to sensitivity). Similarly,
we define the FPF (or false-alarm rate) as the rate at
which the neural network flagged the voxel as being
tumor tissue, when the radiologist did not mark the

voxel as being tumor tissue (which is similar to the
inverse of specificity).

We sample the output at various thresholds between
0 and 100. At each threshold, we produce a collection of
output images and statistics that are useful for choos-
ing a good threshold and evaluating the performance of
the neural network training. The TPF (sensitivity) and
the FPF (1-specificity) can be plotted. The resulting plot
is an ROC curve. An optimal classifier maximizes the
area under the ROC curve, and therefore the area under
the curve (Az) is a measure of classifier performance. We
note that voxels used for training are excluded from
statistical analysis because they may bias the results.

RESULTS

Table 1 shows the size of each IDC lesion as indicated
by manual segmentation of the lesion by two separate
radiologists. Using observer 1 as the gold standard, we
determined the percent difference between the two le-
sion volumes reported by the radiologists. On a study-
by-study basis, we found that the percent difference
varied from 6.74% to 34.56% depending on the size,
irregularity in shape, and overall enhancement of the
tumor. We note that the largest percent difference be-
tween the two observers occurred in the smallest lesion,
where small variations led to large percent differences.
We also found that there was only a 1.56% difference
between the average volumes. Thus, on average we can-
not say that one particular radiologist was more con-
servative than the other in marking the lesions.

After we trained the neural network as described
above, we tested the classifier using voxels that were
not used for training. Figure 1 shows the ROC curve
produced by comparing the neural network output with
the manual segmentation by observer 1 for the six stud-
ies. Each data point (x) on the curve corresponds to a

Table 1
Volume of Each IDC Tumor as Reported by Manual Lesion
Segmentations by Two Separate Radiologists*

Lesion
number

Lesion
volume

(observer #1)
(cm3)

Lesion
volume

(observer #2)
(cm3)

Percent
difference (%)

IDC1 27.39 30.94 �12.96
IDC2 24.88 22.27 –10.49
IDC3 1.36 0.89 –34.56
IDC4 7.71 8.23 �6.74
Average 15.34 15.58 �1.56

*The percent difference in volume is shown for each lesion using
observer #1 as the gold standard. The average lesion volume was
computed for each observer and the percent difference was found.

Figure 1. The ROC performance curve produced by compar-
ing the neural network output with the manual segmentation
by observer 1. The circle (E) denotes the performance of ob-
server 2 as compared to the gold standard (observer 1). Sta-
tistics were gathered by testing all IDC, BEN, and normal
voxels that were not used for training.

498 Woods et al.



sampling of the neural network output at a certain
threshold. The data point denoted by a circle (E) indi-
cates the average FPF vs. TPF derived by comparing
the results of observer 2 with the gold standard of ob-
server 1.

The vast majority of slices had good agreement be-
tween the neural network classifier and observer 1, and
agreement between observers 1 and 2. In Figs. 2–4 we
note some of the key differences. Figure 2 (top) provides
a visualization of the performance of the neural network
as compared to lesion segmentation by observer 1 for
four selected slices of the IDC1 study. Figure 2 (bottom)
illustrates the segmentation performance of observer 2
compared to segmentation by observer 1 for the same
lesion. Figure 3 illustrates a similar comparison for
selected slices of the IDC2 study. Figure 4 shows neural
network classification errors (FPs) that arose due to
incorrect classification of benign lesions, blood vessels,
and patient motion.

In practice, the ground-truth segmentations used for
training the classifier may be derived from a combina-
tion (i.e., union or intersection) of segmentations pro-
vided by several radiologists. Figure 5 shows the per-

formance of the classifier when it was trained and
tested using the union of the segmentations provided
by the two radiologists as the ground truth, and using
the intersection of the segmentations as the ground
truth. In Table 2 we list the area under the ROC curve
Az for the neural network vs. segmentations by observer
1, neural network vs. union of segmentations by ob-
servers 1 and 2, and neural network vs. intersection of
segmentations by observers 1 and 2.

DISCUSSION

The results of this study show that texture analysis can
be used to quantify variations in voxel intensities over
time, and can be used along with a neural network to
segment malignant lesions from DCE-MRI data sets.
The system allows for adjustable thresholds, which
gives the radiologist the option of choosing which sen-
sitivity and specificity range to use for evaluation. For
example, a threshold of 45 produces a sensitivity of
78.77% and a specificity of 99.96%, and a threshold of
25 produces a sensitivity of 96.22% and a specificity of
99.85%. We show in Fig. 1 that a threshold of 45 yields

Figure 2. Performance results
superimposed on anatomy for
the IDC1 study. Yellow � TP,
black/grayscale � TN, green �
FP, red � FN. Top: Neural net-
work classification results us-
ing a threshold of 45 compared
with segmentation by observer
1. Bottom: Segmentation by
observer 2 compared with seg-
mentation by observer 1.

Figure 3. Performance results
superimposed on anatomy for
the IDC2 study. Yellow � TP,
black/grayscale � TN, green �
FP, red � FN. Top: Neural net-
work classification results us-
ing a threshold of 45 compared
with segmentation by observer
1. Bottom: Segmentation by
observer 2 compared with seg-
mentation by observer 1.
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a performance closest to that achieved by the human
experts. Statistically, the mean TPF and FPF at a
threshold of 45 agree with the mean observer 2 perfor-
mance for a 95% confidence interval using a two-sided
t-test with significance level � � 0.05.

The majority of FPs and FNs occur in the vicinity of
the lesion, especially around the border of the lesion.
During manual segmentation, the radiologist must out-
line the lesion by hand using a computer mouse, which
will likely cause some errors in the gold-standard data
set. Also, voxels along the border of the tumor likely
suffer from partial-volume effects because the tumor is
spreading to neighboring tissues, which causes some
(albeit not significant) enhancement. Such effects lead
to reported misclassifications along the lesion’s border,
and may also contribute to intra- and interobserver
variations. For these reasons, we compare the manual
segmentation by a second radiologist with the gold-
standard segmentation. In Fig. 2 (top) we notice that a
significant amount of FPs occur in slice 41. However, in
Fig. 2 (bottom) we notice that segmentation by observer
2 also had FPs in the same region of slice 41. Thus, the
classifier agrees more with observer 2 than with ob-
server 1. Similar results are clearly shown in slice 26 of
Fig. 3.

FPs also occur away from the malignant lesions and
are caused by enhancing tissues and patient motion.
Certain tissues, such as benign fibrocystic lesions and

blood vessels, experience contrast enhancement. Nor-
mally, the neural network classifies benign lesions and
blood vessels as nonmalignant tissue; however, in some
cases benign lesions and blood vessels are misclassified
as malignant, as shown in Fig. 4 (left) and (middle).
Patient motion can also cause misclassifications, espe-
cially around the edge of the breast, as shown in Fig. 4
(right). Future studies will examine whether texture
analysis can be used to detect patient motion and
hence alert the radiologist to possible data corruption.
Texture analysis may also allow for motion correction
since the co-occurrence matrix used to derive the tex-
tures is direction-sensitive through a 4D hyperspace.

From Fig. 5 and Table 2 we notice that segmentations
produced by the neural network have very good agree-
ment with the segmentations produced by taking the
intersection of the segmentations by observers 1 and 2.
That is, the neural network, observer 1, and observer 2
reach a consensus on which regions should be marked
as malignant. When we compare the segmentations
made by the neural network with those produced by
taking the union of the segmentations by observers 1
and 2, there is less agreement. This is because we are
now considering more of the border regions of the tu-
mor, where more variations in segmentations are likely
to occur. We note that the areas under all three ROC
curves shown in Table 2 are an improvement over the
average ROC curve area presented by Twellmann et al
(10).

In conclusion, texture analysis along with a neural
network classifier has the potential to aid radiologists
in the detection and marking of malignant lesions. Our
goal is not to replace the radiologist in malignant-lesion
detection, but rather to offer the radiologist a tool for
detecting tumors faster and more consistently. This
study shows that manual segmentation methods suffer
from interobserver variations, and the classifier pre-
sented in this paper can be used to draw the radiolo-
gist’s attention to questionable regions. The classifier
achieves a performance comparable to that achieved by

Figure 4. Neural network FP
errors due to incorrect classifi-
cation of (left) benign fibrocys-
tic lesion, (middle) blood ves-
sel, and (right) patient motion.

Table 2
Area Under the ROC Performance Curve Is Measured According
to the Segmentations Used for Training and Testing of the IDC,
BEN, and Normal Voxels

Gold standard segmentations Area under ROC curve

Observer #1 0.99948
Union of observers #1 and #2 0.99867
Intersection of observers #1 and #2 0.99957

Figure 5. The ROC performance curve produced by compar-
ing the neural network output with manual segmentation by
observers 1 and 2.
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human manual analysis using the pharmacokinetic
two-compartment model. Although some misclassifica-
tions can occur in areas away from the tumor, these
FPs account for only a small fraction of the FPs. The
majority of FPs occur near the border of the lesion. It is
important to note that the classifier never failed to iden-
tify the malignant lesions in our test cases. The results
presented in this paper suggest that further study us-
ing 4D co-occurrence-based texture analysis would be
worthwhile, and we plan to extend our research to in-
clude more studies and analyses by additional radiolo-
gists.
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