191 research outputs found
Scaling properties of -breathers in nonlinear acoustic lattices
Recently -breathers - time-periodic solutions which localize in the space
of normal modes and maximize the energy density for some mode vector -
were obtained for finite nonlinear lattices. We scale these solutions together
with the size of the system to arbitrarily large lattices. We generalize
previously obtained analytical estimates of the localization length of
-breathers. The first finding is that the degree of localization depends
only on intensive quantities and is size independent. Secondly a critical wave
vector is identified, which depends on one effective nonlinearity
parameter. -breathers minimize the localization length at and
completely delocalize in the limit .Comment: 4 pages, 5 figure
Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation
Rate theory of the radiation-induced precipitation in solids is modified with
account of non-equilibrium fluctuations driven by the gas of lattice solitons
(a.k.a. quodons) produced by irradiation. According to quantitative
estimations, a steady-state density of the quodon gas under sufficiently
intense irradiation can be as high as the density of phonon gas. The quodon gas
may be a powerful driver of the chemical reaction rates under irradiation, the
strength of which exponentially increases with irradiation flux and may be
comparable with strength of the phonon gas that exponentially increases with
temperature. The modified rate theory is applied to modelling of copper
precipitation in FeCu binary alloys under electron irradiation. In contrast to
the classical rate theory, which disagrees strongly with experimental data on
all precipitation parameters, the modified rate theory describes quite well
both the evolution of precipitates and the matrix concentration of copper
measured by different methodsComment: V. Dubinko, R. Shapovalov, Theory of a quodon gas. With application
to precipitation kinetics in solids under irradiation. (Springer
International Publishing, Switzerland, 2014
Nonlinear Lattice Waves in Random Potentials
Localization of waves by disorder is a fundamental physical problem
encompassing a diverse spectrum of theoretical, experimental and numerical
studies in the context of metal-insulator transition, quantum Hall effect,
light propagation in photonic crystals, and dynamics of ultra-cold atoms in
optical arrays. Large intensity light can induce nonlinear response, ultracold
atomic gases can be tuned into an interacting regime, which leads again to
nonlinear wave equations on a mean field level. The interplay between disorder
and nonlinearity, their localizing and delocalizing effects is currently an
intriguing and challenging issue in the field. We will discuss recent advances
in the dynamics of nonlinear lattice waves in random potentials. In the absence
of nonlinear terms in the wave equations, Anderson localization is leading to a
halt of wave packet spreading.
Nonlinearity couples localized eigenstates and, potentially, enables
spreading and destruction of Anderson localization due to nonintegrability,
chaos and decoherence. The spreading process is characterized by universal
subdiffusive laws due to nonlinear diffusion. We review extensive computational
studies for one- and two-dimensional systems with tunable nonlinearity power.
We also briefly discuss extensions to other cases where the linear wave
equation features localization: Aubry-Andre localization with quasiperiodic
potentials, Wannier-Stark localization with dc fields, and dynamical
localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
Spin alignment of mesons produced in neutron-carbon interactions
A new precise measurements of spin density matrix element of
mesons produced inclusively in neutron-carbon interactions at
\~60 GeV have been carried out in the EXCHARM experiment at the Serpukhov
accelerator. The values of obtained in the transversity frame are
for and
for . Significant
dependence of has been observed in production.Comment: 8 pages, LaTeX, 3 eps figure
Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate.
Hereditary hearing loss often results from mutation of genes expressed by cochlear hair cells. Gene addition using AAV vectors has shown some efficacy in mouse models, but clinical application requires two additional advances. First, new AAV capsids must mediate efficient transgene expression in both inner and outer hair cells of the cochlea. Second, to have the best chance of clinical translation, these new vectors must also transduce hair cells in non-human primates. Here, we show that an AAV9 capsid variant, PHP.B, produces efficient transgene expression of a GFP reporter in both inner and outer hair cells of neonatal mice. We show also that AAV9-PHP.B mediates almost complete transduction of inner and outer HCs in a non-human primate. In a mouse model of Usher syndrome type 3A deafness (gene CLRN1), we use AAV9-PHP.B encoding Clrn1 to partially rescue hearing. Thus, we have identified a vector with promise for clinical treatment of hereditary hearing disorders, and we demonstrate, for the first time, viral transduction of the inner ear of a primate with an AAV vector
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Elastic differential cross-section dσ/dt at s√=2.76 TeV and implications on the existence of a colourless C-odd three-gluon compound state
The proton–proton elastic differential cross section dσ/dt has been measured by the TOTEM experiment at s√=2.76 TeV energy with β∗=11 m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer (|t|) from 0.36 to 0.74 GeV2. The differential cross-section can be described with an exponential in the |t|-range between 0.36 and 0.54 GeV2, followed by a diffractive minimum (dip) at |tdip|=(0.61±0.03) GeV2 and a subsequent maximum (bump). The ratio of the dσ/dt at the bump and at the dip is 1.7±0.2. When compared to the proton–antiproton measurement of the D0 experiment at s√=1.96 TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for the exchange of a colourless C-odd three-gluon compound state in the t-channel of the proton–proton and proton–antiproton elastic scattering
Measurement of the CP-Violating Asymmetry Amplitude sin2
We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
A search for the decay
We search for the rare flavor-changing neutral-current decay in a data sample of 82 fb collected with the {\sl BABAR}
detector at the PEP-II B-factory. Signal events are selected by examining the
properties of the system recoiling against either a reconstructed hadronic or
semileptonic charged-B decay. Using these two independent samples we obtain a
combined limit of
at the 90% confidence level. In addition, by selecting for pions rather than
kaons, we obtain a limit of using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe
We report on the realization of a high quality distributed Bragg reflector
with both high and low refractive index layers lattice matched to ZnTe. Our
structure is grown by molecular beam epitaxy and is based on binary compounds
only. The high refractive index layer is made of ZnTe, while the low index
material is made of a short period triple superlattice containing MgSe, MgTe,
and ZnTe. The high refractive index step of Delta_n=0.5 in the structure
results in a broad stopband and the reflectivity coefficient exceeding 99% for
only 15 Bragg pairs.Comment: 4 pages, 3 figure
- …