90 research outputs found
Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson
We exhibit a model in which a single pseudo-Nambu-Goldstone boson explains
dark energy, inflation and baryogenesis. The model predicts correlated signals
in future collider experiments, WIMP searches, proton decay experiments, dark
energy probes, and the PLANCK satellite CMB measurements.Comment: 16 pages, 3 color figure
Detecting matter effects in long baseline experiments
Experiments strongly suggest that the flavour mixing responsible for the
atmospheric neutrino anomaly is very close to being maximal. Thus, it is of
great theoretical as well as experimental importance to measure any possible
deviation from maximality. In this context, we reexamine the effects of matter
interactions in long baseline neutrino oscillation experiments. Contrary to
popular belief, the muon neutrino survival probability is shown to be quite
sensitive to matter effects. Moreover, for moderately long baselines, the
difference between the survival probilities for and is
shown to be large and sensitive to the deviation of from
maximality. Performing a realistic analysis, we demonstrate that a muon-storage
ring -source alongwith an iron calorimeter detector can measure such
deviations. (Contrary to recent claims, this is not so for the NuMI--{\sc
minos} experiment.) We also discuss the possible correlation in measuring
and in such experiment.Comment: 18 pages, LaTe
Deeply Virtual Neutrino Scattering (DVNS)
We introduce the study of neutrino scattering off protons in the deeply
virtual kinematics, which describes under a unified formalism elastic and deep
inelastic neutrino scattering. A real final state photon and a recoiling
nucleon are detected in the few GeV ( GeV) region of momentum
transfer. This is performed via an extension of the notion of deeply virtual
Compton scattering, or DVCS, to the case of a neutral current exchange. The
relevance of this process and of other similar exclusive processes for the
study of neutrino interactions in neutrino factories for GeV neutrinos is
pointed out.Comment: 28 pages, 12 figures, revised final version, to appear in JHE
T-odd correlations in charged Kl4 decays
We analyse the sensitivity to physics beyond the SM of T-odd correlations in
decays, which do not involve the lepton polarization. We show that
a combined analysis of and decays can lead to new
constraints about CP violation in charged-current interactions,
complementary to those obtained from the transverse muon polarization in
and of comparable accuracy.Comment: 6 pages (LaTeX
From parameter space constraints to the precision determination of the leptonic Dirac CP phase
We discuss the precision determination of the leptonic Dirac CP phase
in neutrino oscillation experiments, where we apply the concept
of ``CP coverage''. We demonstrate that this approach carries more information
than a conventional CP violation measurement, since it also describes the
exclusion of parameter regions. This will be very useful for next-generation
long baseline experiments where for sizable first
constraints on can be obtained. As the most sophisticated
experimental setup, we analyze neutrino factories, where we illustrate the
major difficulties in their analysis. In addition, we compare their potential
to the one of superbeam upgrades and next-generation experiments, which also
includes a discussion of synergy effects. We find a strong dependence on the
yet unknown true values of and , as well as
a strong, non-Gaussian dependence on the confidence level. A systematic
understanding of the complicated parameter dependence will be given. In
addition, it is shown that comparisons of experiments and synergy discussions
do in general not allow for an unbiased judgment if they are only performed at
selected points in parameter space. Therefore, we present our results in
dependence of the yet unknown true values of and
. Finally we show that for precision measurements
there exist simple strategies including superbeams, reactor experiments,
superbeam upgrades, and neutrino factories, where the crucial discriminator is
.Comment: 32 pages, 9 figure
Electron neutrino tagging through tertiary lepton detection
We discuss an experimental technique aimed at tagging electron neutrinos in
multi-GeV artificial sources on an event-by-event basis. It exploits in a novel
manner calorimetric and tracking technologies developed in the framework of the
LHC experiments and of rare kaon decay searches. The setup is suited for
slow-extraction, moderate power beams and it is based on an instrumented decay
tunnel equipped with tagging units that intercept secondary and tertiary
leptons from the bulk of undecayed \pi^+ and protons. We show that the taggers
are able to reduce the \nue contamination originating from K_e3 decays by about
one order of magnitude. Only a limited suppression (~60%) is achieved for \nue
produced by the decay-in-flight of muons; for low beam powers, similar
performance as for K_e3 can be reached supplementing the tagging system with an
instrumented beam dump.Comment: 19 pages, 7 figures; minor changes, version to appear in EPJ
Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector
I attempt to quantify how far from maximal one should expect the atmospheric
mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to
a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done
by assuming that the solar mass-squared difference is induced by an
"anarchical" first order perturbation, an approach than can naturally lead to
experimentally allowed values for all oscillation parameters. In particular,
both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from
maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case
of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in
the case of an inverted one. Hence, if any of the textures analyzed here has
anything to do with reality, next-generation neutrino experiments can see a
nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the
case of an inverted mass-hierarchy only neutrino factories should be able to
see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde
Recommended from our members
Radiation environment and shielding for a high luminosity collider detector
Detectors now under design for use in the proposed high energy high luminosity colliders must deal with unprecedented radiation levels. We have performed a comprehensive study for the GEM detector at the SSC to determine the best way to shield critical detector components from excessive radiation, with special attention paid to the low energy neutrons and photons. We have used several detailed Monte-Carlo simulations to calculate the particle fluxes in the detector. We describe these methods and demonstrate that two orders of magnitude reduction in the neutron and photon fluxes can be obtained with appropriate shielding of critical forward regions such as the low beta quadrupoles and the forward calorimeter
Search for the decay in the momentum region
We have searched for the decay in the kinematic
region with pion momentum below the peak. One event was
observed, consistent with the background estimate of . This
implies an upper limit on
(90% C.L.), consistent with the recently measured branching ratio of
, obtained using the standard model
spectrum and the kinematic region above the peak. The
same data were used to search for , where is a weakly
interacting neutral particle or system of particles with .Comment: 4 pages, 2 figure
Theta-13 as a Probe of Mu-Tau symmetry for Leptons
Many experiments are being planned to measure the neutrino mixing parameter
using reactor as well as accelerator neutrino beams. In this
note, the theoretical significance of a high precision measurement of this
parameter is discussed. It is emphasized that it will provide crucial
information about different ways to understand the origin of large atmospheric
neutrino mixing and move us closer towards determining the neutrino mass
matrix. For instance if exact symmetry in the
neutrino mass matrix is assumed to be the reason for maximal
mixing, one gets . Whether or can provide information about the way the
symmetry breaking manifests in the case of normal hierarchy. We also discuss
the same question for inverted hierarchy as well as possible gauge theories
with this symmetry.Comment: 12 pages; no figures; latex; more exact expressions given for some
parameters and minor typos corrected; paper accepted for publication in JHE
- …
