1,800 research outputs found
Cost of exploration for metallic minerals in Alaska
The high cost of exploration for metallic minerals in Alaska not only reflects a 20-50% increase in the cost of supplies, food and
salaries over those "outside" but also some additional costs that are characteristic of most Alaskan exploration efforts. Transportation in particular often represents half of the exploration budget and is a major
cost of almost all programs. Helicopters commonly are used as the basic mode of field transportation; their cost is high (about 300 per hour) and increasing, and their availability is becoming less certain
with the accelerating demand for them. Salaries for field personnel are also considerably higher than those paid to personnel "outside". And the demand, both from within and without the mining industry, for those with Alaskan experience is so great as to drive those salaries even higher. Fuel and communication costs not only show the usual Alaskan mark-up but are also subject to local scarcity and almost unavoidable problems. Fuel will probably continue to be available in the major population centers
but there have always been difficulties in providing or obtaining fuel in the bush; these will undoubtedly be magnified with the booming development of Alaska's petroleum resources and national scarcity. Communications with the field will undoubtedly continue to be uncertain at times and will frequently present major problems that money along cannot solve and result
in much frustration and delay. Contract services such as drilling, geophysical work, and geochemical analyses are available within the state in varying degree or can be obtained "outside" at rates that do not seem to be unduly expensive. However, the cost of transportation, mobilization, and demobilization of the personnel and equipment used in performing these services may result in unusually high costs for projects of short duration. Early logistical planning has always been considered wise in Alaskan
field work and it will undoubtedly continue to be important, if not essential. The lack of it may be alleviated in some cases with copious applications of money but with Alaska's present booming development, the
lack of planning may lead to an uncertain ability to work in the field at all. The cost of Alaskan exploration programs vary greatly. Many of the reconnaissance geologic and geochemical programs are strikingly expensive chiefly because of the need for helicopter support. Other types of programs
such as prospect evaluations are not nearly so expensive and Alaskan costs for projects of limited area or duration are nor necessarily prohibitive. In almost all cases, experience, imagination, and prior planning can reduce costs significantly
Placer mining in Alaska II
During July, August and September, 1979, a team from the Mineral Industry Research Laboratory visited a number of placer mining districts that could be reached by automobile, hence at a reasonable cost for transportation. These districts yielded varying amounts of information that will be of value to the industry. The district visited were: 1. Fairbanks, 2. Circle (Birch Creak), 3. Livengood (Tolovana), 4. Manley Hot Springs, 5. Fortymile, 6. Klondike, 7. Kantishna, 8. Yentna.University of Alaska Mining and Mineral Resources Research Institute.Placer mining in Alaska II -- Selected references -- List of figures
Rotating Einstein-Yang-Mills Black Holes
We construct rotating hairy black holes in SU(2) Einstein-Yang-Mills theory.
These stationary axially symmetric black holes are asymptotically flat. They
possess non-trivial non-Abelian gauge fields outside their regular event
horizon, and they carry non-Abelian electric charge. In the limit of vanishing
angular momentum, they emerge from the neutral static spherically symmetric
Einstein-Yang-Mills black holes, labelled by the node number of the gauge field
function. With increasing angular momentum and mass, the non-Abelian electric
charge of the solutions increases, but remains finite. The asymptotic expansion
for these black hole solutions includes non-integer powers of the radial
variable.Comment: 63 pages, 10 figure
The generalized Robinson-Foulds metric
The Robinson-Foulds (RF) metric is arguably the most widely used measure of
phylogenetic tree similarity, despite its well-known shortcomings: For example,
moving a single taxon in a tree can result in a tree that has maximum distance
to the original one; but the two trees are identical if we remove the single
taxon. To this end, we propose a natural extension of the RF metric that does
not simply count identical clades but instead, also takes similar clades into
consideration. In contrast to previous approaches, our model requires the
matching between clades to respect the structure of the two trees, a property
that the classical RF metric exhibits, too. We show that computing this
generalized RF metric is, unfortunately, NP-hard. We then present a simple
Integer Linear Program for its computation, and evaluate it by an
all-against-all comparison of 100 trees from a benchmark data set. We find that
matchings that respect the tree structure differ significantly from those that
do not, underlining the importance of this natural condition.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Deterministically Driven Avalanche Models of Solar Flares
We develop and discuss the properties of a new class of lattice-based
avalanche models of solar flares. These models are readily amenable to a
relatively unambiguous physical interpretation in terms of slow twisting of a
coronal loop. They share similarities with other avalanche models, such as the
classical stick--slip self-organized critical model of earthquakes, in that
they are driven globally by a fully deterministic energy loading process. The
model design leads to a systematic deficit of small scale avalanches. In some
portions of model space, mid-size and large avalanching behavior is scale-free,
being characterized by event size distributions that have the form of
power-laws with index values, which, in some parameter regimes, compare
favorably to those inferred from solar EUV and X-ray flare data. For models
using conservative or near-conservative redistribution rules, a population of
large, quasiperiodic avalanches can also appear. Although without direct
counterparts in the observational global statistics of flare energy release,
this latter behavior may be relevant to recurrent flaring in individual coronal
loops. This class of models could provide a basis for the prediction of large
solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar
Physic
Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling
Concern over reported honeybee (Apis mellifera spp.) losses has highlighted chemical exposure as a risk. Current laboratory oral toxicity tests in A. mellifera spp. use short-term, maximum 96 hour, exposures which may not necessarily account for chronic and cumulative toxicity. Here, we use extended 240 hour (10 day) exposures to examine seven agrochemicals and trace environmental pollutant toxicities for adult honeybees. Data were used to parameterise a dynamic energy budget model (DEBtox) to further examine potential survival effects up to 30 day and 90 day summer and winter worker lifespans. Honeybees were most sensitive to insecticides (clothianidin > dimethoate ≫ tau-fluvalinate), then trace metals/metalloids (cadmium, arsenic), followed by the fungicide propiconazole and herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). LC50s calculated from DEBtox parameters indicated a 27 fold change comparing exposure from 48 to 720 hours (summer worker lifespan) for cadmium, as the most time-dependent chemical as driven by slow toxicokinetics. Clothianidin and dimethoate exhibited more rapid toxicokinetics with 48 to 720 hour LC50s changes of <4 fold. As effects from long-term exposure may exceed those measured in short-term tests, future regulatory tests should extend to 96 hours as standard, with extension to 240 hour exposures further improving realism
Recurrent triploidy due to a failure to complete maternal meiosis II: whole-exome sequencing reveals candidate variants
Triploidy is a relatively common cause of miscarriage; however, recurrent triploidy has rarely been reported. A healthy 34-year-old woman was ascertained because of 18 consecutive miscarriages with triploidy found in all 5 karyotyped losses. Molecular results in a sixth loss were also consistent with triploidy. Genotyping of markers near the centromere on multiple chromosomes suggested that all six triploid conceptuses occurred as a result of failure to complete meiosis II (MII). The proband's mother had also experienced recurrent miscarriage, with a total of 18 miscarriages. Based on the hypothesis that an inherited autosomal-dominant maternal predisposition would explain the phenotype, whole-exome sequencing of the proband and her parents was undertaken to identify potential candidate variants. After filtering for quality and rarity, potentially damaging variants shared between the proband and her mother were identified in 47 genes. Variants in genes coding for proteins implicated in oocyte maturation, oocyte activation or polar body extrusion were then prioritized. Eight of the most promising candidate variants were confirmed by Sanger sequencing. These included a novel change in the PLCD4 gene, and a rare variant in the OSBPL5 gene, which have been implicated in oocyte activation upon fertilization and completion of MII. Several variants in genes coding proteins playing a role in oocyte maturation and early embryonic development were also identified. The genes identified may be candidates for the study in other women experiencing recurrent triploidy or recurrent IVF failur
Modeling electrolytically top gated graphene
We investigate doping of a single-layer graphene in the presence of
electrolytic top gating. The interfacial phenomena is modeled using a modified
Poisson-Boltzmann equation for an aqueous solution of simple salt. We
demonstrate both the sensitivity of graphene's doping levels to the salt
concentration and the importance of quantum capacitance that arises due to the
smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters
for a special issue related to the NGC 2009 conference
(http://asdn.net/ngc2009/index.shtml
An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU observations
Indexación: Scopus.We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092-7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈ 170 pc and spectral resolution of 36 km s-1. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈ 10′′ to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈ 137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s-1, and a mean velocity dispersion of 100 km s-1. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s-1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10-2 M⊙ yr-1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10-2 M⊙ yr-1. The total ionized gas mass within ∼84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of ∼34 km s-1 in this gas would be required to feed both the outflow and SMBH accretion. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/06/aa31671-17/aa31671-17.htm
Scalar hairy black holes and solitons in asymptotically flat spacetimes
A numerical analysis shows that a class of scalar-tensor theories of gravity
with a scalar field minimally and nonminimally coupled to the curvature allows
static and spherically symmetric black hole solutions with scalar-field hair in
asymptotically flat spacetimes. In the limit when the horizon radius of the
black hole tends to zero, regular scalar solitons are found. The asymptotically
flat solutions are obtained provided that the scalar potential of the
theory is not positive semidefinite and such that its local minimum is also a
zero of the potential, the scalar field settling asymptotically at that
minimum. The configurations for the minimal coupling case, although unstable
under spherically symmetric linear perturbations, are regular and thus can
serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal
coupling case, the stability will be analyzed in a forthcoming paper.Comment: 7 pages, 10 postscript figures, file tex, new postscript figs. and
references added, stability analysis revisite
- …
