253 research outputs found
Nanostructures and energy conversion
The unique properties of nanostructures associated with
their low dimensionality give rise to new opportunities for research
on nanoscale heat transfer and energy conversion. Inspired
by Majumdar’s analysis of the novel aspects of heat, mass,
and charge flow across the interface between hard and soft materials,
some perspectives about research frontiers in nanoscale
heat transfer and energy conversion are provided
Electronic structure of ion-implanted graphite
The magnetoreflection technique is applied to study Landau-level transitions in graphite implanted with P31 ions at a variety of fluences and energies. The magnetoreflection spectra are explained in terms of the Slonczewski-Weiss-McClure band model with small changes in the band parameters that describe pristine graphite. Neglecting trigonal warping, the fluence dependence of the nearest-neighbor intraplanar (0) and interplanar (1) overlap integrals is presented. The observed changes in these band parameters are consistent with increasing disorder as the fluence of implantation increases
Evidence for internal field in graphite: A conduction electron spin resonance study
We report conduction electron spin resonance measurements performed on highly
oriented pyrolitic graphite samples between 10 K and 300 K using S (f = 4 GHz),
X (f = 9.4 GHz), and Q (f = 34.4 GHz) microwave bands for the external
dc-magnetic field applied parallel (H || c) and perpendicular (H perp c) to the
sample hexagonal c-axis. The results obtained in the H || c geometry are
interpreted in terms of the presence of an effective internal
ferromagnetic-like field Heff-int(T,H) that increases as the temperature
decreases and the applied dc-magnetic field increases. We associate the
occurrence of the Heff-int(T,H) with the field-induced metal-insulator
transition in graphite and discuss its origin in the light of relevant
theoretical models.Comment: 10 pages (tex), 5 figures (ps
Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory
In this paper, we investigate the low frequency Raman spectra of multi-wall
carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency
Raman modes are unambiguously identified on purified samples thanks to the
small internal diameter of the MWNT. We propose a model to describe these
modes. They originate from the radial breathing vibrations of the individual
walls coupled through the Van der Waals interaction between adjacent concentric
walls. The intensity of the modes is described in the framework of bond
polarization theory. Using this model and the structural characteristics of the
nanotubes obtained from transmission electron microscopy allows to simulate the
experimental low frequency Raman spectra with an excellent agreement. It
suggests that Raman spectroscopy can be as useful regarding the
characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.
Exo-hydrogenated Single Wall Carbon Nanotubes
An extensive first-principles study of fully exo-hydrogenated zigzag (n,0)
and armchair (n,n) single wall carbon nanotubes (CH), polyhedral
molecules including cubane, dodecahedrane, and CH points to
crucial differences in the electronic and atomic structures relevant to
hydrogen storage and device applications. CH's are estimated to be
stable up to the radius of a (8,8) nanotube, with binding energies proportional
to 1/R. Attaching a single hydrogen to any nanotube is always exothermic.
Hydrogenation of zigzag nanotubes is found to be more likely than armchair
nanotubes with similar radius. Our findings may have important implications for
selective functionalization and finding a way of separating similar radius
nanotubes from each other.Comment: 5 pages, 4 postscript figures, Revtex file, To be appear in Physical
Review
Evolution of avalanche conducting states in electrorheological liquids
Charge transport in electrorheological fluids is studied experimentally under
strongly nonequlibrium conditions. By injecting an electrical current into a
suspension of conducting nanoparticles we are able to initiate a process of
self-organization which leads, in certain cases, to formation of a stable
pattern which consists of continuous conducting chains of particles. The
evolution of the dissipative state in such system is a complex process. It
starts as an avalanche process characterized by nucleation, growth, and thermal
destruction of such dissipative elements as continuous conducting chains of
particles as well as electroconvective vortices. A power-law distribution of
avalanche sizes and durations, observed at this stage of the evolution,
indicates that the system is in a self-organized critical state. A sharp
transition into an avalanche-free state with a stable pattern of conducting
chains is observed when the power dissipated in the fluid reaches its maximum.
We propose a simple evolution model which obeys the maximum power condition and
also shows a power-law distribution of the avalanche sizes.Comment: 15 pages, 6 figure
Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet
We study the order parameter symmetry in a hexagonal crystal with co-existing
superconductivity and ferromagnetism. An experimental example is provided by
carbon-based materials, such as graphite-sulfur composites, in which an
evidence of such co-existence has been recently discovered. The presence of a
non-zero magnetization in the normal phase brings about considerable changes in
the symmetry classification of superconducting states, compared to the
non-magnetic case.Comment: 4 pages, REVTe
How does the substrate affect the Raman and excited state spectra of a carbon nanotube?
We study the optical properties of a single, semiconducting single-walled
carbon nanotube (CNT) that is partially suspended across a trench and partially
supported by a SiO2-substrate. By tuning the laser excitation energy across the
E33 excitonic resonance of the suspended CNT segment, the scattering
intensities of the principal Raman transitions, the radial breathing mode
(RBM), the G-mode and the D-mode show strong resonance enhancement of up to
three orders of magnitude. In the supported part of the CNT, despite a loss of
Raman scattering intensity of up to two orders of magnitude, we recover the E33
excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak
intensity ratio between G-band and D-band is highly sensitive to the presence
of the substrate and varies by one order of magnitude, demonstrating the much
higher defect density in the supported CNT segments. By comparing the E33
resonance spectra measured by Raman excitation spectroscopy and
photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we
observe that the peak energy in the PL excitation spectrum is red-shifted by 40
meV. This shift is associated with the energy difference between the localized
exciton dominating the PL excitation spectrum and the free exciton giving rise
to the Raman excitation spectrum. High-resolution Raman spectra reveal
substrate-induced symmetry breaking, as evidenced by the appearance of
additional peaks in the strongly broadened Raman G band. Laser-induced line
shifts of RBM and G band measured on the suspended CNT segment are both linear
as a function of the laser excitation power. Stokes/anti-Stokes measurements,
however, reveal an increase of the G phonon population while the RBM phonon
population is rather independent of the laser excitation power.Comment: Revised manuscript, 20 pages, 8 figure
Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds
The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested
in literature to play a primary role in its superconducting pairing. We
investigate, by means of LDA calculations, the microscopic origin of such an
anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the
anharmonic character of the E_{2g} phonon is essentially driven by the small
Fermi energy of the sigma holes. We present a simple analytic model which
allows us to understand in microscopic terms the role of the small Fermi energy
and of the electronic structure. The relation between anharmonicity and
nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical
Review
- …