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Nanostructures will influence future trends 1n
heat transfer because:

* Fundamental new laws of nature can be explored widening
our understanding of important physical phenomena and
opening up new research directions.

* New physical phenomena are introduced that can be
exploited for practical applications.

 Interfaces play a more important role in nanostructures.
Many more types of interesting interfaces are possible.

« Parameters that cannot be controlled independently in bulk
systems, can however be controlled at the nanoscale.



Fundamental New Laws

Electrical Conductance Quantization in 1D
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S. Datta, “Electronic Transport in Mesoscopic Systems”



Fundamental New Laws
Quantized Phonon Transport in 1D
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(a) Suspended mesoscopic phonon device used to measure ballistic phonon trans-

port. The device consists of an 4x4micron “phonon cavity" (center) connected to four Si;N,
membranes, 60nm thick and less than 200nm wide. The two bright “C" shaped objects

on the phonon cavity are thin film heating and sensing Cr/Au resistors, whereas the dark
regions are empty space. (b) Log-log plot of the temperature dependence of the thermal

conductance of the structure in (a) (Schwab et al., 2001).
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New Physical Phenomena 1n Nanostructures:

Semimetal-Semiconductor Transition in B1
e Bi

— Group V element |
~ Semimetal in bulk form
— The conduction band (L-electron) A/-Tt“é?___\)\
overlaps with the valence band / j—'—( Vm’n pocket (A)
(T-hole) by 38 meV (= | | &
* Binanowire by 0 NN e 2 T

— Semimetal-semiconductor
transition occurs at a wire

diameter about 50 nm due to
quantum confinement effects U
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New Electronic Phases not Present in Bulk:
Predicted Phases of B1,_Sb_Nanowires
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* New phase 1s at largest wire diameter to have direct gap
semiconductor when 10 carrier pockets are degenerate in energy



Thermoelectric Effect and Applications

 Seebeck effect

HOT :CD'_,D S AV S > 0 for p-type

_- T AT S < 0 for n-type

_|_
e Thermoelectric cooling

o AV o
— No moving parts
— Can be integrated with electronic
circuits (e.g. CPU) i _

— Environmentally friendly
— Localized cooling with rapid response Thermoelectric Generator

e Power Generation

— Use waste heat to generate electricity



Application of Low Dimensionality
for enhancing thermoelectric Performance

Seebeck Coefficient Conductivity Difficulties in increasing Z7 in bulk materials:

Temperature
\ / / STe=0l
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T ghermal_ _ = A limit to Z is rapidly obtained in
onductivity ti 1 materials
. conventiona
ZT ~ 3 for desired goal ;

= So far, best bulk material (Bi, ;Sb, sTe;)

has ZT ~ 1 at 300 K

Low dimensions give additional control.:
e Enhanced density of states due to quantum confinement effects
= Increase S without reducing o
e Boundary scattering at interfaces reduces k more than ¢
e Possibility of carrier pocket engineering to get thermoelectric
contribution in both quantum well and barrier regions



Carrier Pocket Engineering Approach to
Enhance Z;,T

GaAs AlAs Application of Carrier Pocket Engineering
Concept 1n GaAs/AlAs quantum well

A I superlattice systems
—Optimization of well and barrier widths

:"‘ """""""" S L —Determination of lattice growth
r orientation
—Enhancement in Z7 from various carrier
pockets other than I'" point pockets
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* Concept successtully applied to GaAs/AlAs and S1/S1,_ Ge, superlattices.



1D Nanostructures and Thermoelectricity

* Electronic properties may be dramatically modified due to the electron
confinement in nanostructures which exhibit low-dimensional behaviors
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DIMENSIONLESS FIGURE OF MERIT ZT
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PbTe/PbTeSe Quantum Dot
Superlattices

Ternary: ZT=1.3-1.6
Quaternary: ZT=2

AT=43.7 K, Bulk AT=30.8 K AT=32.2 K, ZT ~2-2.4
T.C. Harman, Science, 2002 R. Venkatasubramanian, Nature, 2001
PbTe/PbSeTe Nanostructure  Bulk Bi,Te;/Sb,Te; Superlattice Bulk
Power Factor (uW/cmK?) 32 28 40 50.9

Conductivity (W/mK) 0.6 2.5 0.5 1.26



Superlattice Nanowire for
Thermoelectrics

Superlattice Nanowire
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e Advantages
— Benefit from both the superlattice and the nanowire structures
— Enhanced thermopower due to sharper density of states than
ordinary 1D nanowires (enhance 5)

— Reduction of the lattice thermal conductivity by increasing the phonon
scattering at the segment interfaces (decrease «)
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Size Effect in 1D Thermal Conductivity

PHONON RADIATION + DEBYE MODEL

- Gray Radiation Approximation: Neglects confinement,
tunneling, coherence, spectral nature.

* Debye: Retain only acoustic modes. A single group velocity
characterizes each material.

* Bulk Scattering: Incorporated at end of calculation via
Matthiessen’s Rule.
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» Compare k(T) with pure Si nanowires [5]

- No known data for segmented wires

* Qualitative agreement is good for all but smallest wire.

- Model k is higher by ~50-150%

* Possible sources of error:
- Finer grains than bulk - segmented Si?
- Gray assumption.

- Choice of o,

Experiment, courtesy of D. Li [Huxtable et al 2002]

K [W/m-K]

k [W/m-K]

50 .

40

30

20

10

100

80
60
40

20

O:

T T T T ] T T T T I T T |= I1 i 5! nH]
e w'ﬂjﬂ"uiﬂl‘f‘:"‘i"# o
%) L»T\:‘jhr‘?ﬁj(‘jiﬂ?—(rﬂlm ; 1 1 ] 1 1 1 ) ] 1 1]
0 100 200 300
Model
T T T T ] T T T T I T T T T T T ]
D =115 nm
1 1 1 I 1 1 1 1 I 1 1 L 1 I 1 1 ]

100 200 300
T[K]
Dames and Chen (2002)



Nanostructures will influence future trends 1n
heat transfer because:

* Fundamental new laws of nature can be explored widening
our understanding of important physical phenomena and
opening up new research directions.

* New physical phenomena are introduced that can be
exploited for practical applications.

 Interfaces play a more important role in nanostructures.
Many more types of interesting interfaces are possible.

« Parameters that cannot be controlled independently in bulk
systems, can however be controlled at the nanoscale.



