449 research outputs found

    de Sitter thermodynamics and the braneworld

    Full text link
    The de Sitter thermodynamics of cosmological models with a modified Friedmann equation is considered, with particular reference to high-energy Randall-Sundrum and Gauss-Bonnet braneworlds. The Friedmann equation can be regarded as the first law of thermodynamics of an effective gravitational theory in quasi de Sitter spacetime. The associated entropy provides some selection rules for the range of the parameters of the models, and is proposed for describing tunneling processes in the class of high-energy gravities under consideration.Comment: 16 pages JHEP style, no figures. v2: references added; v3: typo corrected in Eq.(3.1), supersedes published versio

    Bouncing cosmological solutions due to the self-gravitational corrections and their stability

    Get PDF
    In this paper we consider the bouncing braneworld scenario, in which the bulk is given by a five-dimensional AdS black hole spacetime with matter field confined in a D3D_3 brane. Exploiting the CFT/FRW-cosmology relation, we consider the self-gravitational corrections to the first Friedmann-like equation which is the equation of the brane motion. The self-gravitational corrections act as a source of stiff matter contrary to standard FRW cosmology where the charge of the black hole plays this role. Then, we study the stability of solutions with respect to homogeneous and isotropic perturbations. Specifically, if we do not consider the self-gravitational corrections, the AdS black hole with zero ADM mass, and open horizon is an attractor, while, if we consider the self-gravitational corrections, the AdS black hole with zero ADM mass and flat horizon, is a repellerComment: 9 pages, no figure

    Fundamental Superstrings as Holograms

    Get PDF
    The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS_3 \times S^{d-1} \times T^{8-d}, (d =3,..,8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d=3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings.Comment: 46 pages, JHEP style. v2: Comments, references adde

    Chiral field theories from conifolds

    Full text link
    We discuss the geometric engineering and large n transition for an N=1 U(n) chiral gauge theory with one adjoint, one conjugate symmetric, one antisymmetric and eight fundamental chiral multiplets. Our IIB realization involves an orientifold of a non-compact Calabi-Yau A_2 fibration, together with D5-branes wrapping the exceptional curves of its resolution as well as the orientifold fixed locus. We give a detailed discussion of this background and of its relation to the Hanany-Witten realization of the same theory. In particular, we argue that the T-duality relating the two constructions maps the Z_2 orientifold of the Hanany-Witten realization into a Z_4 orientifold in type IIB. We also discuss the related engineering of theories with SO/Sp gauge groups and symmetric or antisymmetric matter.Comment: 34 pages, 8 figures, v2: References added, minor correction

    Tunnelling through black rings

    Full text link
    Hawking radiation of black ring solutions to 5-dimensional Einstein-Maxwell-dilaton gravity theory is analyzed by use of the Parikh-Wilczek tunnelling method. To get the correct tunnelling amplitude and emission rate, we adopted and developed the Angheben-Nadalini-Vanzo-Zerbini covariant approach to cover the effects of rotation and electronic discharge all at once, and the effect of back reaction is also taken into account. This constitute a unified approach to the tunnelling problem. Provided the first law of thermodynamics for black rings holds, the emission rate is proportional to the exponential of the change of Bekenstein-Hawking entropy. Explicit calculation for black ring temperatures agree exactly with the results obtained via the classical surface gravity method and the quasilocal formalism.Comment: 10 pages, V2: various modifications throughout the text, plus a lot of newly added reference

    Instanton Number Calculus on Noncommutative R^4

    Get PDF
    In noncommutative spaces, it is unknown whether the Pontrjagin class gives integer, as well as, the relation between the instanton number and Pontrjagin class is not clear. Here we define ``Instanton number'' by the size of BαB_{\alpha} in the ADHM construction. We show the analytical derivation of the noncommuatative U(1) instanton number as an integral of Pontrjagin class (instanton charge) with the Fock space representation. Our approach is for the arbitrary converge noncommutative U(1) instanton solution, and is based on the anti-self-dual (ASD) equation itself. We give the Stokes' theorem for the number operator representation. The Stokes' theorem on the noncommutative space shows that instanton charge is given by some boundary sum. Using the ASD conditions, we conclude that the instanton charge is equivalent to the instanton number.Comment: 29 pages, 7 figures, some statements in Sec.4.3 correcte

    alpha'-exact entropies for BPS and non-BPS extremal dyonic black holes in heterotic string theory from ten-dimensional supersymmetry

    Full text link
    We calculate near-horizon solutions for four-dimensional 4-charge and five-dimensional 3-charge black holes in heterotic string theory from the part of the ten-dimensional tree-level effective action which is connected to gravitational Chern-Simons term by supersymmetry. We obtain that the entropies of large black holes exactly match the alpha'-exact statistical entropies obtained from microstate counting (D=4) and AdS/CFT correspondence (D=5). Especially interesting is that we obtain agreement for both BPS and non-BPS black holes, contrary to the case of R^2-truncated (four-derivative) actions (D-dimensional N=2 off-shell supersymmetric or Gauss-Bonnet) were used, which give the entropies agreeing (at best) just for BPS black holes. The key property of the solutions, which enabled us to tackle the action containing infinite number of terms, is vanishing of the Riemann tensor \bar{R}_{MNPQ} obtained from torsional connection defined with \bar{\Gamma} = \Gamma - H/2. Morover, if every monomial of the remaining part of the effective action would contain at least two Riemanns \bar{R}_{MNPQ}, it would trivially follow that our solutions are exact solutions of the full heterotic effective action in D=10. The above conjecture, which appeared (in this or stronger form) from time to time in the literature, has controversial status, but is supported by the most recent calculations of Richards (arXiv:0807.3453 [hep-th]). Agreement of our results for the entropies with the microscopic ones supports the conjecture. As for small black holes, our solutions in D=5 still have singular horizons.Comment: 28 pages; v2: minor changes, references added; v3: extended discussion on small black holes in sec. 5.4, more references added, accepted in JHE

    Non-supersymmetric Attractors in Born-Infeld Black Holes with a Cosmological Constant

    Full text link
    We investigate the attractor mechanism for spherically symmetric extremal black holes in Einstein-Born-Infeld-dilaton theory of gravity in four-dimensions, in the presence of a cosmological constant. We look for solutions analytic near the horizon by using perturbation method. It is shown that the values of the scalar fields at the horizon are only dependent on the charges carried by the black hole and are irrelevant in their asymptotic values. This analysis supports the validity of non-supersymmetric attractors in the presence of higher derivative interactions in the gauge fields part and in non-asymptotically flat spacetime.Comment: 18 pages, no figu

    On The Stability of Non-Supersymmetric Attractors in String Theory

    Get PDF
    We study non-supersymmetric attractors obtained in Type IIA compactifications on Calabi Yau manifolds. Determining if an attractor is stable or unstable requires an algebraically complicated analysis in general. We show using group theoretic techniques that this analysis can be considerably simplified and can be reduced to solving a simple example like the STU model. For attractors with D0-D4 brane charges, determining stability requires expanding the effective potential to quartic order in the massless fields. We obtain the full set of these terms. For attractors with D0-D6 brane charges, we find that there is a moduli space of solutions and the resulting attractors are stable. Our analysis is restricted to the two derivative action.Comment: 20 pages, Late

    Hawking Radiation as Tunneling through the Quantum Horizon

    Get PDF
    Planck-scale corrections to the black-hole radiation spectrum in the Parikh-Wilczek tunneling framework are calculated. The corrective terms arise from modifications in the expression of the surface gravity in terms of the mass-energy of the black hole-emitted particle system. The form of the new spectrum is discussed together with the possible consequences for the fate of black holes in the late stages of evaporation.Comment: 13 pages; the contents of this paper overlap somewhat with the earlier submissions hep-th/0504188 and gr-qc/0505015; (v2) references added and various cosmetic (but no physics) changes, to appear in JHE
    • …
    corecore