16 research outputs found

    Do quasi-regular structures really exist in the solar photosphere? I. Observational evidence

    Full text link
    Two series of solar-granulation images -- the La Palma series of 5 June 1993 and the SOHO MDI series of 17--18 January 1997 -- are analysed both qualitatively and quantitatively. New evidence is presented for the existence of long-lived, quasi-regular structures (first reported by Getling and Brandt (2002)), which no longer appear unusual in images averaged over 1--2-h time intervals. Such structures appear as families of light and dark concentric rings or families of light and dark parallel strips (``ridges'' and ``trenches'' in the brightness distributions). In some cases, rings are combined with radial ``spokes'' and can thus form ``web'' patterns. The characteristic width of a ridge or trench is somewhat larger than the typical size of granules. Running-average movies constructed from the series of images are used to seek such structures. An algorithm is developed to obtain, for automatically selected centres, the radial distributions of the azimuthally averaged intensity, which highlight the concentric-ring patterns. We also present a time-averaged granulation image processed with a software package intended for the detection of geological structures in aerospace images. A technique of running-average-based correlations between the brightness variations at various points of the granular field is developed and indications are found for a dynamical link between the emergence and sinking of hot and cool parcels of the solar plasma. In particular, such a correlation analysis confirms our suggestion that granules -- overheated blobs -- may repeatedly emerge on the solar surface. Based on our study, the critical remarks by Rast (2002) on the original paper by Getling and Brandt (2002) can be dismissed.Comment: 21 page, 8 figures; accepted by "Solar Physics

    Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI observations

    Full text link
    We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet sun using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard \textit{Hinode}. Line profiles of Fe \textsc{i} 557.6 nm were recorded by the Narrow band Filter Imager (NFI) on a 82"×82"82" \times 82" FOV during 75 min with a time step of 28.75 s and 0.08"" pixel size. Vertical velocities were computed at three atmospheric levels (80, 130 and 180 km) using the bisector technique allowing the determination of energy flux in the range 3-10 mHz using two complementary methods (Hilbert transform and Fourier power spectra). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. The net energy flux is upward. In the range 3-10 mHz, a full FOV space and time averaged flux of 2700 W m2^{-2} (lower layer 80-130 km) and 2000 W m2^{-2} (upper layer 130-180 km) is concentrated in less than 1% of the solar surface in the form of narrow (0.3"") AE. Their total duration (including rise and decay) is of the order of 10310^{3} s. Inside each AE, the mean flux is 1.61051.6 10^{5} W m2^{-2} (lower layer) and 1.21051.2 10^{5} W m2^{-2} (upper). Each event carries an average energy (flux integrated over space and time) of 2.510192.5 10^{19} J (lower layer) to 1.910191.9 10^{19} J (upper). More than 10610^{6} events could exist permanently on the Sun, with a birth and decay rate of 3500 s1^{-1}. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.Comment: 18 pages, 10 figure

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Intensifying Maize Production Under Climate Change Scenarios in Central West Burkina Faso

    Get PDF
    Combination of poor soil fertility and climate change and variability is the biggest obstacle to agricultural productivity in Sub-Saharan Africa. While each of these factors requires different promising adaptive and climate-resilient options, it is important to be able to disaggregate their effects. This can be accomplished with ordinary agronomic trials for soil fertility and climate year-to-year variability, but not for long-term climate change effects. In turn, by using climate historical records and scenario outputs from climate models to run dynamic models for crop growth and yield, it is possible to test the performance of crop management options in the past but also anticipate their performance under future climate change or variability. Nowadays, the overwhelming importance given to the use of crop models is motivated by the need of predicting crop production under future climate change, and outputs from running crop models may serve for devising climate risk adaptation strategies. In this study we predicted yield of one maize variety named Massongo for the time periods 1980–2010 (historical) and 2021–2050 (2030s, near future) across agronomic practices including the fertilizer input rates recommended by the national extension services (28 kg N, 20 kg P, and 13 kg K ha−1). The performance of the crop model DSSAT 4.6 for maize was first evaluated using on-farm experimental data that encompassed two seasons in the Sudano-Sahelian zone in six contrasting sites of Central West Burkina Faso. The efficiency of the crop model was evidenced by reliable simulations of total aboveground biomass and yields after calibration and validation. The root-mean-square error (RMSE) of the entire dataset for grain yield was 643 kg ha−1 and 2010 kg ha−1 for total aboveground biomass. Three regional climate change projections for Central West Burkina Faso indicate a decrease in rainfall during the growing period of maize. All the three scenarios project that the decrease in rainfall is to the tune of 3–9% in the 2030s under RCP4.5 in contrast to climate scenarios produced by the regional climate model GCM ICHEC-EC-Earth which predicted an increase of rainfall of 25% under RCP8.5. Simulations using the CERES-DSSAT model reveal that maize yields without fertilizer show the same trend as with fertilizer in response to climate change projections across RCPs. Under RCP4.5 with output from the climate model ICHEC-EC-Earth, yield can slightly increase compared to the historical baseline on average by less than 5%. In contrast, under RCP8.5, yield is increased by 13–22% with the two other climate models in fertilized and non-fertilized plots, respectively. Nevertheless, the average maize yield will stay below 2000 kg ha−1 under non-fertilized plots in RCP4.5 and with recommended mineral fertilizer rates regardless of the RCP scenarios produced by ICHEC-EC-Earth. Giving the fact that soil fertility improvement alone cannot compensate for the adverse impact of future climate on agricultural production particularly in case of high rainfall predicted by ICHEC-EC-Earth, it is recommended to combine various agricultural techniques and practices to improve uptake of nitrogen and to reduce nitrogen leaching such as the splitting of fertilizer applications, low-release nitrogen fertilizers, agroforestry, and any other soil and water conservation practices

    Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal

    Full text link

    О создании единого следственного органа в России

    Get PDF
    Time-averaged series of granulation images are analysed using COLIBRI, a purpose-adapted version of a code originally developed to detect straight or curvilinear features in aerospace images. The algorithm of image processing utilises a nonparametric statistical criterion that identifies a straight-line segment as a linear feature (lineament) if the photospheric brightness at a certain distance from this line is on both sides stochastically lower or higher than at the line itself. Curvilinear features can be detected as chains of lineaments, using a criterion modified in some way. Once the input parameters used by the algorithm are properly adjusted, the algorithm highlights ``ridges'' and ``trenches'' in the relief of the brightness field, drawing white and dark lanes. The most remarkable property of the trenching patterns is a nearly-universally-present parallelism of ridges and trenches. Since the material upflows are brighter than the downflows, the alternating parallel light and dark lanes should reflect the presence of roll convection in the subphotospheric layers. If the numerous images processed by us are representative, the patterns revealed suggest a widespread occurrence of roll convection in the outer solar convection zone. In particular, the roll systems could form the fine structure of larger-scale, supergranular and/or mesogranular convection flows. Granules appear to be overheated blobs of material that could develop in convection rolls due to some instabilities of roll motion.Comment: 16 pages, 7 figures; accepted by Solar Physic
    corecore