47 research outputs found

    Fermionic Casimir effect with helix boundary condition

    Full text link
    In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Ref. \cite{Feng,Zhai3} is something like that between a M\"obius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the (D+1D+1)-dimensional space-time. For both massless and massive cases, there is a Z2Z_2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity.Comment: 7 pages, 4 figures, published in Eur. Phys. J.

    Multiple Λ\LambdaCDM cosmology with string landscape features and future singularities

    Full text link
    Multiple Λ\LambdaCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimick (multiple) Λ\LambdaCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.Comment: LaTeX 11 pages, 10 figure

    Universal procedure to cure future singularities of dark energy models

    Full text link
    A systematic search for different viable models of the dark energy universe, all of which give rise to finite-time, future singularities, is undertaken, with the purpose to try to find a solution to this common problem. After some work, a universal procedure to cure all future singularities is developed and carefully tested with the help of explicit examples corresponding to each one of the four different types of possible singularities, as classified in the literature. The cases of a fluid with an equation of state which depends on some parameter, of modified gravity non-minimally coupled to a matter Lagrangian, of non-local gravity, and of isotropic turbulence in a dark fluid universe theory are investigated in detail

    On Isotropic Turbulence in the Dark Fluid Universe

    Get PDF
    As first part of this work, experimental information about the decay of isotropic turbulence in ordinary hydrodynamics, u^2(t) proportional to t^{-6/5}, is used as input in FRW equations in order to investigate how an initial fraction f of turbulent kinetic energy in the cosmic fluid influences the cosmological development in the late, quintessence/phantom, universe. First order perturbative theory to the first order in f is employed. It turns out that both in the Hubble factor, and in the energy density, the influence from the turbulence fades away at late times. The divergences in these quantities near the Big Rip behave essentially as in a non-turbulent fluid. However, for the scale factor, the turbulence modification turns out to diverge logarithmically. As second part of our work, we consider the full FRW equation in which the turbulent part of the dark energy is accounted for by a separate term. It is demonstrated that turbulence occurrence may change the future universe evolution due to dissipation of dark energy. For instance, phantom-dominated universe becomes asymptotically a de Sitter one in the future, thus avoiding the Big Rip singularity.Comment: 10 pages, no figures, significant revision. Matches published versio

    Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-kappaB nuclear translocation

    Get PDF
    Systems for in vitro culture of Hepatitis C virus (HCV) are essential tools to analyse virus-cell interactions and to investigate relevant pathophysiological aspects of HCV infection. Although the HCV replicon methodology has increased our understanding of HCV biology, this system does not reproduce the natural infection. Recently, tupaia (Tupaia belangeri chinensis) hepatocytes have been utilized for in vitro culture of HCV. In the present work, primary tupaia hepatocytes infected in vitro with HCV were used to analyse the evolution of HCV quasispecies in infected cells and the ability of the virus to influence antiviral and proinflammatory responses in cells sustaining virus replication. The results confirmed the potential of tupaia hepatocytes as a model for HCV infection, although this system is limited by rapid loss of differentiated cell phenotype in culture. These findings revealed an extraordinary plasticity of HCV quasispecies, which underwent rapid evolution to tupaia-tropic variants as early as 24 h after infection. It was also shown that HCV could activate interferon-sensitive genes, albeit modestly in comparison with other viruses such as Semliki Forest virus. Importantly, HCV activated NF-kappaB in primary hepatocytes and upregulated NF-kappaB-responsive genes including the chemokines MCP-1 and CXCL2 (MIP-2). This effect may play a role in induction of the hepatic inflammatory reaction in vivo. In summary, HCV quasispecies adapt rapidly to the specific biology of the host and HCV stimulates a blunted interferon response while inducing a proinflammatory phenotype in the infected cell

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity

    Full text link
    We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory.Comment: LaTeX 12 pages, typos are correcte

    The Casimir effect for parallel plates in the spacetime with a fractal extra compactified dimension

    Full text link
    The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like δ>1/2\delta>1/2 to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.Comment: 9 pages, 3 figure

    The Covariant Entropy Bound, Brane Cosmology, and the Null Energy Condition

    Get PDF
    In discussions of Bousso's Covariant Entropy Bound, the Null Energy Condition is always assumed, as a sufficient {\em but not necessary} condition which helps to ensure that the entropy on any lightsheet shall necessarily be finite. The spectacular failure of the Strong Energy Condition in cosmology has, however, led many astrophysicists and cosmologists to consider models of dark energy which violate {\em all} of the energy conditions, and indeed the current data do not completely rule out such models. The NEC also has a questionable status in brane cosmology: it is probably necessary to violate the NEC in the bulk in order to obtain a "self-tuning" theory of the cosmological constant. In order to investigate these proposals, we modify the Karch-Randall model by introducing NEC-violating matter into AdS5AdS_5 in such a way that the brane cosmological constant relaxes to zero. The entropy on lightsheets remains finite. However, we still find that the spacetime is fundamentally incompatible with the Covariant Entropy Bound machinery, in the sense that it fails the Bousso-Randall consistency condition. We argue that holography probably forbids all {\em cosmological} violations of the NEC, and that holography is in fact the fundamental physical principle underlying the cosmological version of the NEC.Comment: 21 pages, 3 figures, version 2:corrected and greatly improved discussion of the Bousso-Randall consistency check, references added; version3: more references added, JHEP versio

    Thermal Casimir effect in ideal metal rectangular boxes

    Full text link
    The thermal Casimir effect in ideal metal rectangular boxes is considered using the method of zeta functional regularization. The renormalization procedure is suggested which provides the finite expression for the Casimir free energy in any restricted quantization volume. This expression satisfies the classical limit at high temperature and leads to zero thermal Casimir force for systems with infinite characteristic dimensions. In the case of two parallel ideal metal planes the results, as derived previously using thermal quantum field theory in Matsubara formulation and other methods, are reproduced starting from the obtained expression. It is shown that for rectangular boxes the temperature-dependent contribution to the electromagnetic Casimir force can be both positive and negative depending on side lengths. The numerical computations of the scalar and electromagnetic Casimir free energy and force are performed for cubesComment: 10 pages, 4 figures, to appear in Europ. Phys. J.
    corecore