23 research outputs found

    Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar Flares dynamics

    Full text link
    In the second part of this study and similarly with part one, the nonlinear analysis of the solar flares index is embedded in the non-extensive statistical theory of Tsallis [1]. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the solar flares timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu [2]. Our analysis showed clearly the following: a) a phase transition process in the solar flare dynamics from high dimensional non Gaussian SOC state to a low dimensional also non Gaussian chaotic state, b) strong intermittent solar corona turbulence and anomalous (multifractal) diffusion solar corona process, which is strengthened as the solar corona dynamics makes phase transition to low dimensional chaos: c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics. e) The solar flare dynamical profile is revealed similar to the dynamical profile of the solar convection zone as far as the phase transition process from SOC to chaos state. However the solar low corona (solar flare) dynamical characteristics can be clearly discriminated from the dynamical characteristics of the solar convection zone.Comment: 21 pages, 11 figures, 1 table. arXiv admin note: substantial text overlap with arXiv:1201.649

    Biased diffusion in a piecewise linear random potential

    Full text link
    We study the biased diffusion of particles moving in one direction under the action of a constant force in the presence of a piecewise linear random potential. Using the overdamped equation of motion, we represent the first and second moments of the particle position as inverse Laplace transforms. By applying to these transforms the ordinary and the modified Tauberian theorem, we determine the short- and long-time behavior of the mean-square displacement of particles. Our results show that while at short times the biased diffusion is always ballistic, at long times it can be either normal or anomalous. We formulate the conditions for normal and anomalous behavior and derive the laws of biased diffusion in both these cases.Comment: 11 pages, 3 figure

    Плоскоклеточный рак полового члена у больного ранним нейросифилисом

    Get PDF
    Squamous cell carcinoma of the skin (SSCC) is one of the most common malignant skin tumors. Syphilis is a sexually transmitted disease caused by Treponema pallidum, with human beings as the only host. The combination of syphilis and squamous cell carcinoma of the skin is not uncommon, particularly if the lesions are located on different parts of the body. However, simultaneous development of the chancre and squamous cell carcinoma of the glans penis seems exceptional. Considering rarity of the manifestation observed we feel the rare case of combined syphilis and squamous cell skin cancer is of interest.Плоскоклеточный рак кожи является одним из самых частых злокачественных новообразований кожи. Сифилис - заболевание, передаваемое половым путем, вызванное бледной трепонемой (Treponema pallidum.) Сочетание сифилиса с плоскоклеточным раком кожи не редкость, особенно если они располагаются на разных участках тела, но одновременное развитие твердого шанкра и плоскоклеточного рака кожи в области головки полового члена нечастое явление. Учитывая редкость данной клинической картины, представляет научный интерес наблюдавшийся нами случай сочетанного проявления сифилиса и плоскоклеточного рака кожи

    Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part one: Sunspot dynamics

    Full text link
    In this study, the nonlinear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu. Our analysis showed clearly the following: a) a phase transition process in the solar dynamics from high dimensional non Gaussian SOC state to a low dimensional non Gaussian chaotic state, b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes phase transition to low dimensional chaos in accordance to Ruzmaikin, Zeleny and Milovanov studies c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics.Comment: 40 pages, 11 figure

    Tunneling with dissipation and decoherence for a large spin

    Full text link
    We present rigorous solution of problems of tunneling with dissipation and decoherence for a spin of an atom or a molecule in an isotropic solid matrix. Our approach is based upon switching to a rotating coordinate system coupled to the local crystal field. We show that the spin of a molecule can be used in a qubit only if the molecule is strongly coupled with its atomic environment. This condition is a consequence of the conservation of the total angular momentum (spin + matrix), that has been largely ignored in previous studies of spin tunneling.Comment: 4 page

    Large-Scale Neighbor-Joining with NINJA

    Full text link
    Abstract Neighbor-joining is a well-established hierarchical clustering algorithm for inferring phylogenies. It begins with observed distances between pairs of sequences, and clustering order depends on a metric related to those distances. The canonical algorithm requires O(n3) time and O(n2) space for n sequences, which precludes application to very large sequence families, e.g. those containing 100,000 sequences. Datasets of this size are available today, and such phylogenies will play an increasingly important role in comparative genomics studies. Recent algorithmic advances have greatly sped up neighbor-joining for inputs of thousands of sequences, but are limited to fewer than 13,000 sequences on a system with 4GB RAM. In this paper, I describe an algorithm that speeds up neighbor-joining by dramatically reducing the number of distance values that are viewed in each iteration of the clustering procedure, while still computing a correct neighbor-joining tree. This algorithm can scale to inputs larger than 100,000 sequences because of external-memory-efficient data structures. A free implementation may by obtained fro

    The Physics of the B Factories

    Get PDF

    Correlations and Anomalous Transport Models

    No full text
    corecore