400 research outputs found

    Flux-Bubble Models and Mesonic Molecules

    Get PDF
    It has been shown that the string-flip potential model reproduces most of the bulk properties of nuclear matter, with the exception of nuclear binding. Furthermore, it was postulated that this model, with the inclusion of the colour-hyperfine interaction, should produce binding. In some recent work a modified version of the string-flip potential model was developed, called the flux-bubble model, which would allow for the addition of perturbative QCD interactions. In attempts to construct a simple qqˉq\bar q nucleon system using the flux-bubble model (which only included colour-Coulomb interactions) difficulties arose with trying to construct a many-body variational wave function that would take into account the locality of the flux-bubble interactions. In this talk we consider a toy system, a mesonic molecule in order to understand these difficulties. En route, a new variational wave function is proposed that may have a significant enough impact on the old string-flip potential model results that the inclusion of perturbative effects may not be needed.Comment: 8 pages, Latex, avec 9 eps files, http://www.physics.carleton.ca/~boyce/papers/mrst97.p

    Stability of Spatial Optical Solitons

    Full text link
    We present a brief overview of the basic concepts of the soliton stability theory and discuss some characteristic examples of the instability-induced soliton dynamics, in application to spatial optical solitons described by the NLS-type nonlinear models and their generalizations. In particular, we demonstrate that the soliton internal modes are responsible for the appearance of the soliton instability, and outline an analytical approach based on a multi-scale asymptotic technique that allows to analyze the soliton dynamics near the marginal stability point. We also discuss some results of the rigorous linear stability analysis of fundamental solitary waves and nonlinear impurity modes. Finally, we demonstrate that multi-hump vector solitary waves may become stable in some nonlinear models, and discuss the examples of stable (1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons", Eds. W. Torruellas and S. Trillo (Springer, New York

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl

    Deep exclusive π+\pi^+ electroproduction off the proton at CLAS

    Get PDF
    The exclusive electroproduction of π+\pi^+ above the resonance region was studied using the CEBAF\rm{CEBAF} Large Acceptance Spectrometer (CLAS\rm{CLAS}) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of CLAS\rm{CLAS}, together with the high luminosity, allowed us to measure the cross section for the γpnπ+\gamma^* p \to n \pi^+ process in 140 (Q2Q^2, xBx_B, tt) bins: 0.16<xB<0.580.16<x_B<0.58, 1.6 GeV2<^2<Q2Q^2<4.5<4.5 GeV2^2 and 0.1 GeV2<^2<t-t<5.3<5.3 GeV2^2. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.Comment: 18pages, 21figures,2table

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Electron Scattering From High-Momentum Neutrons in Deuterium

    Full text link
    We report results from an experiment measuring the semi-inclusive reaction d(e,eps)d(e,e'p_s) where the proton psp_s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass WW^{*}, backward proton momentum ps\vec{p}_{s} and momentum transfer Q2Q^{2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' F2neffF_{2n}^{eff} was extracted as a function of WW^{*} and the scaling variable xx^{*} at extreme backward kinematics, where effects of FSI appear to be smaller. For ps>400p_{s}>400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F2neffF_{2n}^{eff} in the region of xx^{*} between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1 Referenc

    Measurement of the branching fraction for Υ(1S)τ+τ\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)τ+τ)=(2.61 ± 0.12 +0.090.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure
    corecore