15 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Analysis by mass spectrometry of pomc-derived peptides in amphibian melanotrope subpopulations

    No full text
    We have previously shown that the melanotrope population of the pituitary intermediate lobe of Rana ridibunda is composed of two subpopulations, of low (LD) and high density (HD), that show distinct ultrastructural features and display different synthetic and secretory rates. To investigate whether LD and HD melanotrope cells also differ in proopiomelanocortin (POMC) processing, we have analyzed the POMC-end products in single cells from both subpopulations by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The mass spectra revealed the presence of 8 POMC-derived peptides in HD and LD melanotrope cells, indicating a similar processing of the precursor in both subpopulations. However, the relative abundance of three POMC-end products (i.e. lys-γ1- MSH, acetyl-α-MSH, and CLIP fragment) was higher in the HD subset. Moreover, two peptides with molecular weights of 1030 and 1818 Da, respectively, were detected that could not be assigned to any product deduced from the frog POMC sequence. The relative amount of the 1030 Da peptide was higher in LD melanotrope cells. Taken together, our results suggest that POMC processing is differentially regulated in the two melanotrope cell subsets

    Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat

    No full text
    Kisspeptins have recently emerged as essential regulators of gonadotropin secretion and puberty onset. These functions are primarily conducted by stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) secretion. However, relevant aspects of Kiss-1 physiology, including the ontogeny and major signaling systems of its stimulatory action, remain to be fully elucidated. To cover these issues, the effects of kisspeptin-10 on GnRH and LH secretion were monitored at early stages of postnatal maturation, and potential changes in the sensitivity to kisspeptin were assessed along the pubertal transition in the rat. In addition, the signaling cascades involved in kisspeptin-induced GnRH secretion were explored by means of pharmacological blockade using rat hypothalamic explants. Despite sexual immaturity, kisspeptin-10 potently elicited GnRH release ex vivo and LH secretion in vivo at early stages (neonatal to juvenile) of postnatal development. Yet, LH responsiveness to low doses of kisspeptin was enhanced in peri-pubertal animals. Concerning GnRH secretion, the stimulatory action of kisspeptin-10 required activation of phospholipase-C, mobilization of intracellular Ca2+ and recruitment of ERK1/2 and p38 kinases, but was preserved after blockade of type 2 cyclo-oxygenase and prostaglandin synthesis.,In summary, our present data document the ontogeny, sensitivity and intracellular signals for the stimulatory action of kisspeptin on the GnRH/LH axis in the rat. Although LH responses to low doses of kisspeptin appeared to be enhanced at puberty, kisspeptin was able to readily activate the GnRH system at early stages of postnatal maturation. These observations further stress the essential role of kisspeptin in normal, and eventually pathological, timing of puberty

    Aquaporin-11 contributes to TGF-ÎČ1-Induced endoplasmic reticulum stress in human visceral adipocytes: role in obesity-associated inflammation

    No full text
    Aquaporin-11 (AQP11) is expressed in human adipocytes, but its functional role remains unknown. Since AQP11 is an endoplasmic reticulum (ER)-resident protein that transports water, glycerol, and hydrogen peroxide (H2O2), we hypothesized that this superaquaporin is involved in ER stress induced by lipotoxicity and inflammation in human obesity. AQP11 expression was assessed in 67 paired visceral and subcutaneous adipose tissue samples obtained from patients with morbid obesity and normal-weight individuals. We found that obesity and obesity-associated type 2 diabetes increased (p < 0.05) AQP11 mRNA and protein in visceral adipose tissue, but not subcutaneous fat. Accordingly, AQP11 mRNA was upregulated (p < 0.05) during adipocyte differentiation and lipolysis, two biological processes altered in the obese state. Subcellular fractionation and confocal microscopy studies confirmed its presence in the ER plasma membrane of visceral adipocytes. Proinflammatory factors TNF-α, and particularly TGF-ÎČ1, downregulated (p < 0.05) AQP11 mRNA and protein expression and reinforced its subcellular distribution surrounding lipid droplets. Importantly, the AQP11 gene knockdown increased (p < 0.05) basal and TGF-ÎČ1-induced expression of the ER markers ATF4 and CHOP. Together, the downregulation of AQP11 aggravates TGF-ÎČ1-induced ER stress in visceral adipocytes. Owing to its "peroxiporin" properties, AQP11 overexpression in visceral fat might constitute a compensatory mechanism to alleviate ER stress in obesity

    The caveolae-associated coiled-coil protein, NECC2, regulates insulin signalling in Adipocytes

    No full text
    Adipocyte dysfunction in obesity is commonly associated with impaired insulin sig-nalling in adipocytes and insulin resistance. Insulin signalling has been associatedwith caveolae, which are coated by large complexes of caveolin and cavin proteins,along with proteins with membrane‐binding and remodelling properties. Here, weanalysed the regulation and function of a component of caveolae involved in growthfactor signalling in neuroendocrine cells, neuroendocrine long coiled‐coil protein‐2(NECC2), in adipocytes. Studies in 3T3‐L1 cells showed that NECC2 expressionincreased during adipogenesis. Furthermore, NECC2 co‐immunoprecipitated withcaveolin‐1 (CAV1) and exhibited a distribution pattern similar to that of the compo-nents of adipocyte caveolae, CAV1, Cavin1, the insulin receptor and cortical actin.Interestingly, NECC2 overexpression enhanced insulin‐activated Akt phosphoryla-tion, whereas NECC2 downregulation impaired insulin‐induced phosphorylation ofAkt and ERK2. Finally, an up‐regulation ofNECC2in subcutaneous and omental adi-pose tissue was found in association with human obesity and insulin resistance. Thiseffect was also observed in 3T3‐L1 adipocytes exposed to hyperglycaemia/hyperin-sulinemia. Overall, the present study identifies NECC2 as a component of adipocytecaveolae that is regulated in response to obesity and associated metabolic complica-tions, and supports the contribution of this protein as a molecular scaffold modulat-ing insulin signal transduction at these membrane microdomains

    The caveolae-associated coiled-coil protein, NECC2, regulates insulin signalling in Adipocytes

    Get PDF
    Adipocyte dysfunction in obesity is commonly associated with impaired insulin sig-nalling in adipocytes and insulin resistance. Insulin signalling has been associatedwith caveolae, which are coated by large complexes of caveolin and cavin proteins,along with proteins with membrane‐binding and remodelling properties. Here, weanalysed the regulation and function of a component of caveolae involved in growthfactor signalling in neuroendocrine cells, neuroendocrine long coiled‐coil protein‐2(NECC2), in adipocytes. Studies in 3T3‐L1 cells showed that NECC2 expressionincreased during adipogenesis. Furthermore, NECC2 co‐immunoprecipitated withcaveolin‐1 (CAV1) and exhibited a distribution pattern similar to that of the compo-nents of adipocyte caveolae, CAV1, Cavin1, the insulin receptor and cortical actin.Interestingly, NECC2 overexpression enhanced insulin‐activated Akt phosphoryla-tion, whereas NECC2 downregulation impaired insulin‐induced phosphorylation ofAkt and ERK2. Finally, an up‐regulation ofNECC2in subcutaneous and omental adi-pose tissue was found in association with human obesity and insulin resistance. Thiseffect was also observed in 3T3‐L1 adipocytes exposed to hyperglycaemia/hyperin-sulinemia. Overall, the present study identifies NECC2 as a component of adipocytecaveolae that is regulated in response to obesity and associated metabolic complica-tions, and supports the contribution of this protein as a molecular scaffold modulat-ing insulin signal transduction at these membrane microdomains

    The L-[alpha]-lysophosphatidylinositol/GPR55 system and its potential role in human obesity

    No full text
    GPR55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. We investigated 1) whether GPR55 is expressed in fat and liver; 2) the correlation of both GPR55 and LPI with several metabolic parameters; and 3) the actions of LPI on human adipocytes. We analyzed CB1, CB2, and GPR55 gene expression and circulating LPI levels in two independent cohorts of obese and lean subjects, with both normal or impaired glucose tolerance and type 2 diabetes. Ex vivo experiments were used to measure intracellular calcium and lipid accumulation. GPR55 levels were augmented in the adipose tissue of obese subjects and further so in obese patients with type 2 diabetes when compared with nonobese subjects. Visceral adipose tissue GPR55 correlated positively with weight, BMI, and percent fat mass, particularly in women. Hepatic GPR55 gene expression was similar in obese and type 2 diabetic subjects. Circulating LPI levels were increased in obese patients and correlated with fat percentage and BMI in women. LPI increased the expression of lipogenic genes in visceral adipose tissue explants and intracellular calcium in differentiated visceral adipocytes. These findings indicate that the LPI/GPR55 system is positively associated with obesity in humans

    The L-[alpha]-lysophosphatidylinositol/GPR55 system and its potential role in human obesity

    No full text
    GPR55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. We investigated 1) whether GPR55 is expressed in fat and liver; 2) the correlation of both GPR55 and LPI with several metabolic parameters; and 3) the actions of LPI on human adipocytes. We analyzed CB1, CB2, and GPR55 gene expression and circulating LPI levels in two independent cohorts of obese and lean subjects, with both normal or impaired glucose tolerance and type 2 diabetes. Ex vivo experiments were used to measure intracellular calcium and lipid accumulation. GPR55 levels were augmented in the adipose tissue of obese subjects and further so in obese patients with type 2 diabetes when compared with nonobese subjects. Visceral adipose tissue GPR55 correlated positively with weight, BMI, and percent fat mass, particularly in women. Hepatic GPR55 gene expression was similar in obese and type 2 diabetic subjects. Circulating LPI levels were increased in obese patients and correlated with fat percentage and BMI in women. LPI increased the expression of lipogenic genes in visceral adipose tissue explants and intracellular calcium in differentiated visceral adipocytes. These findings indicate that the LPI/GPR55 system is positively associated with obesity in humans
    corecore