1,218 research outputs found

    The strength of human resource practices and transformational leadership: impact on organisational performance

    Get PDF
    The Human resource (HR) strength concept (Bowen, D., and Ostroff, C. 2004, ‘Understanding HRM-Firm Performance Linkages: The Role of the “Strength” of the HRM System,’ Academy of Management Review, 29, 2, 203–221) reflects the capacity of an HR system to transmit messages characterised by high distinctiveness, consistency and consensus. HR systems are therefore affecting perceptions and interpretations of organisational realities, such as climate and culture. Furthermore, Bowen and Ostroff (2004) suggest that organisational climate mediates the relationship between HR strength and performance. The leadership literature advocates that leaders are people who are able to create a social context in which employees are guided towards a shared interpretation, understanding and perception of the organisational climate (Yukl, G.A. 1989, Leadership in Organizations, Englewood Cliffs, NJ: Prentice Hall). In summary, bothHR strength and leadership are two environment dimensions shaping and moulding employees’ perceptions and interpretations. The current study explores the relationships between HR strength, leadership, organisational climate and performance. 323 questionnaires were used to gather information from a company in the industrial sector. The results show a positive relationship between the variables; however, mediating effects of climate were only observed between leadership and performance.info:eu-repo/semantics/publishedVersio

    Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1:a novel anticancer small-molecule

    Get PDF
    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs

    Root system traits and its relationship with photosynthesis and productivity in four maize genotypes under drought

    Get PDF
    The present study combined evaluations of agronomic parameters such as roots morphometry (using the WinRhizo program) and leaf gas exchange, in order to detect features in the root system which allow the maintenance of photosynthetic rates and productivity in four maize genotypes contrasting for tolerance to water deficit (WD), two tolerant (DKB 390 and BRS1055) and two sensitive (BRS 1010 and 2B710). The genotypes showed similar tolerance to dehydration of leaf tissue, but the tolerant genotypes DKB 390 and BRS1055 presented higher photosynthetic rate and yield compared to the sensitive BRS 1010 and 2B710. Nevertheless, divergent strategies of adaptation to drought among tolerant genotypes were observed. The genotype DKB 390 presented physiological mechanisms in shoots responsible for minimizing water loss, which decreases the dependence of root adjustments to increase the absorption of water. In turn, the BRS 1055 genotype showed a drought avoidance strategy by producing fine roots associated with a higher leaf area

    2,3-Diarylxanthones as strong scavengers of reactive oxygen and nitrogen species: a structure–activity relationship study

    Get PDF
    Xanthones are a class of oxygen-containing heterocyclic compounds widely distributed in nature. The natural derivatives can present different substitutions in the xanthone core that include hydroxyl, methoxyl, prenyl and glycosyl groups. The inclusion of aryl groups has only been reported for a few synthetic derivatives, the 2,3-diaryl moiety being recently introduced by our group. Xanthones are endowed with a broad spectrum of biological activities, many of them related to their antioxidant ability, including the scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as well as metal chelating effects. Considering the interesting and promising antioxidant activities present in compounds derived from the xanthone core, the main goal of this work was to evaluate the scavenging activity of the new 2,3-diarylxanthones for ROS, including superoxide radical (O2 ), hydrogen peroxide (H2O2), singlet oxygen (1O2), peroxyl radical (ROO ) and hypochlorous acid (HOCl), and RNS, including nitric oxide ( NO) and peroxynitrite anion (ONOO ). The obtained results revealed that the tested 2,3-diarylxanthones are endowed with outstanding ROS and RNS scavenging properties, considering the nanomolar to micromolar range of the IC50 values found. The xanthones with two catechol rings were the most potent scavengers of all tested ROS and RNS. In conclusion, the new 2,3-diarylxanthones are promising molecules to be used for their potential antioxidant properties

    Anti-inflammatory potential of 2-styrylchromones regarding their interference with arachidonic acid metabolic pathways

    Get PDF
    Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostanoids. COX-1 is a constitutive enzyme while the expression of COX-2 is highly stimulated in the event of inflammatory processes, leading to the production of large amounts of prostaglandins (PGs), in particular PGE2 and PGI2, which are pro-inflammatory mediators. Lipoxygenases (LOXs) are enzymes that produce hydroxy acids and leukotrienes (LTs). 5-LOX metabolizes arachidonic acid to yield, among other products, LTB4, a potent chemoattractantmediator of inflammation. The aim of the present work was to evaluate the anti-inflammatory potential of 2-styrylchromones (2-SC), a chemical family of oxygen heterocyclic compounds, vinylogues of flavones (2-phenylchromones), by studying their COX-1 and COX-2 inhibitory capacity as well as their effects on the LTB4 production by stimulated human polymorphonuclear leukocytes (PMNL). Some of the tested 2-SC were able to inhibit both COX-1 activity and LTB4 production which makes them dual inhibitors of the COX and 5-LOX pathways. The most effective compounds in this study were those having structural moieties with proved antioxidant activity (30,40-catechol and 40-phenol substituted B-rings). This type of compounds may exhibit anti-inflammatory activity with a wider spectrum than that of classical non-steroidal anti-inflammatory drugs (NSAIDs) by inhibiting 5-LOX product-mediated inflammatory reactions, towards which NSAIDs are ineffective.The authors acknowledge FCT and FEDER financial support for the project POCI/QUI/59284/2004 and the Organic Chemistry Research Unit (no. 62; Univ. Aveiro). Ana Gomes acknowledges FCT and FSE her PhD grant (SFRH/BD/23299/2005)

    2-Styrylchromones: novel strong scavengers of reactive oxygen and nitrogen species

    Get PDF
    http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S2NjaL1GBbk143plPl1&page=1&doc=1&colname=WOS2-Styrylchromones are a small group of naturally occurring chromones, vinylogues of flavones (2-phenylchromones). Natural and synthetic 2-styrylchromones have been tested in different biological systems, showing activities with potential therapeutic applications. In particular, the potential and hitherto understudied antioxidant behavior of these compounds has been raised as a matter of interest. Thus the present work consisted in the study of the in vitro scavenging activities for reactive oxygen species (ROS) and reactive nitrogen species (RNS) of various 2-styrylchromone derivatives and structurally similar flavonoids. Some of the studied 2-styrylchromones proved to be extremely efficient scavengers of the different ROS and RNS, showing, in some cases, IC50s under 1 lM. The hydroxylation pattern of 2-styrylchromones, especially in the B-ring but also in the A ring, modulates the activity of these compounds, the catecholic derivatives being the most effective scavengers. The styryl pattern also contributes to their observed outstanding antioxidant activity. In conclusion, the scavenging activities for ROS/RNS of 2-styrylchromone derivatives, here shown for the first time, provide novel and most promising compounds to be applied as antioxidants

    Cyclic voltammetric analysis of 2-styrylchromones: Relationship with the antioxidant activity

    Get PDF
    2-Styrylchromones (2-SC) are a chemical family of oxygen heterocyclic compounds, vinylogues of flavones (2-phenylchromones), whose occurrence in nature has been reported. Recently, several 2-SC derivatives were demonstrated to have antioxidant properties, namely, xanthine oxidase inhibition, hepatoprotection against pro-oxidant agents in cellular and non-cellular systems and scavenging activity against reactive oxygen and reactive nitrogen species (ROS and RNS). Considering these antioxidant properties, it may be hypothesised that the electrochemical redox behaviour of 2-SC contributes significantly to their activity. To test this hypothesis, the electrochemical behaviour of different 2-SC was studied, together with a number of flavonoids with well-known antioxidant activities, by cyclic voltammetry, and the results correlated to their ability to scavenge ROS and RNS. The results obtained showed that 2-SC with a catecholic B-ring have a low oxidation peak potential corresponding to the oxidation of the 30,40-OH (catechol) moiety. The compounds with a phenolic B-ring have a common peak, with oxidation potential values of about +0.4/+0.5 V versus Ag/AgCl, corresponding to the oxidation of the 40-OH. The oxidation of the hydroxyl substituents in the A-ring generated peaks of higher potentials (+0.7/+0.8 V vs Ag/AgCl). The results from the scavenging assays were in agreement with those obtained from the cyclic voltammetry, that is, higher scavenging effects corresponded to lower values of oxidation potentials, with significant correlation coefficients. The values obtained for the studied flavonoids are in accordance with the literature, and reflect their relative antioxidant activity, when compared to the studied 2-SC. Thus, in this family of compounds, oxidation potentials obtained by cyclic voltammetry seem to be applicable as a general indicator of radical scavenging activity.The authors acknowledge FCT and FEDER financial support for the Project POCI/QUI/59284/2004. Ana Gomes acknowledges FCT and FSE her Ph.D. Grant (SFRH/BD/23299/2005)

    Preparation of hybrid organic-inorganic materials based on a di-ureasil matrix doped with lithium bis(trifluoromethanesulfonyl)imide

    Get PDF
    In this presentation we describe the preparation of solvent-free solid polymer electrolytes (SPEs) by the sol-gel route with the incorporation of controlled quantities of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) into the host matrix. The host framework of these xerogels, designated as di-ureasils and represented by d-U(900), contains oxyethylene oligomers with about 15 repeat units bonded at each end to a siliceous backbone through urea bridging links. Electrolytes were characterized by ionic conductivity measurements, cyclic voltammetry at a gold microelectrode and thermal analysis. The results obtained reveal that these hybrid materials are completely amorphous and exhibit appropriate electrochemical characteristics for a variety of applications.Fundação para a CiĂȘncia e a Tecnologia - POCI/QUI/59856/2004; POCTI/3/686; SFRH/BD/22707/2005
    • 

    corecore