125 research outputs found

    Trapping Horizons in the Sultana-Dyer Space-Time

    Full text link
    The Sultana-Dyer space-time is suggested as a model describing a black hole embedded in an expanding universe. Recently, in \cite{0705.4012}, its global structure is analyzed and the trapping horizons are shown. In the paper, by directly calculating the expansions of the radial null vector fields normal to the space-like two-spheres foliating the trapping horizons, we find that the trapping horizon outside the event horizon in the Sultana-Dyer space-time is a past trapping horizon. Further, we find that the past trapping horizon is an outer, instantaneously degenerate or inner trapping horizon accordingly when the radial coordinate is less than, equal to or greater than some value.Comment: no figures, 5 pages; PCAS and key words are adde

    The combined expression of solute carriers is associated with a poor prognosis in highly proliferative ER+ breast cancer

    Get PDF
    Purpose: Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity, and patient outcome. Glutamine availability for growth and progression of BC is important in several BC subtypes. This study aimed to evaluate the biological and prognostic role of the combined expression of key glutamine transporters, SLC1A5, SLC7A5 and SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. Methods: SLC1A5, SLC7A5 and SLC3A2 were assessed at the protein level, using immunohistochemistry on tissue microarrays constructed from a large well characterised BC cohort (n=2,248). Patients were stratified into accredited clusters based on protein expression and correlated with clinicopathological parameters, molecular subtypes, and patient outcome. Results: Clustering analysis of SLC1A5, SLC7A5 and SLC3A2 identified three clusters Low SLCs (SLC1A5-/SLC7A5-/SLC3A2-), High SLC1A5 (SLC1A5+/SLC7A5-/SLC3A2-) and High SLCs (SLC1A5+/SLC7A5+/SLC3A2+) which had distinct correlations to known prognostic factors and patient outcome (p<0.001). The key regulator of tumour cell metabolism, c-MYC, was significantly expressed in tumours in the High SLCs cluster (p<0.001). When different BC subtypes were considered, the association with the poor outcome was observed in the ER+ high proliferation/luminal B class only (p= 0.003). In multivariate analysis, SLC clusters were independent risk factor for shorter breast cancer specific survival (p= 0.001). Conclusion: The co-operative expression of SLC1A5, SLC7A5 and SLC3A2 appears to play a role in the aggressive subclass of ER+ high proliferation/ luminal BC, driven by c-MYC, and therefore have the potential to act as therapeutic targets, particularly in synergism

    Do the Unidentified EGRET Sources Trace Annihilating Dark Matter in the Local Group?

    Full text link
    In a cold dark matter (CDM) framework of structure formation, the dark matter haloes around galaxies assemble through successive mergers with smaller haloes. This merging process is not completely efficient, and hundreds of surviving halo cores, or {\it subhaloes}, are expected to remain in orbit within the halo of a galaxy like the Milky Way. While the dozen visible satellites of the Milky Way may trace some of these subhaloes, the majority are currently undetected. A large number of high-velocity clouds (HVCs) of neutral hydrogen {\it are} observed around the Milky Way, and it is plausible that some of the HVCs may trace subhaloes undetected in the optical. Confirming the existence of concentrations of dark matter associated with even a few of the HVCs would represent a dramatic step forward in our attempts to understand the nature of dark matter. Supersymmetric (SUSY) extensions of the Standard Model of particle physics currently suggest neutralinos as a natural well-motivated candidate for the non-baryonic dark matter of the universe. If this is indeed the case, then it may be possible to detect dark matter indirectly as it annihilates into neutrinos, photons or positrons. In particular, the centres of subhaloes might show up as point sources in gamma-ray observations. In this work we consider the possibility that some of the unidentified EGRET Îł\gamma-ray sources trace annihilating neutralino dark matter in the dark substructure of the Local Group. We compare the observed positions and fluxes of both the unidentified EGRET sources and the HVCs with the positions and fluxes predicted by a model of halo substructure, to determine to what extent any of these three populations could be associated.Comment: 12 Pages, 4 figures, to appear in a special issue of ApSS. Presented at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.02263−0.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) −0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.7788−0.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) −0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.1079−0.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) −0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.00189−0.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) −0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.711−3.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) −4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Generating Sustainable Value from Open Data in a Sharing Society

    Get PDF
    Part 1: Creating ValueInternational audienceOur societies are in the midst of a paradigm shift that transforms hierarchal markets into an open and networked economy based on digital technology and information. In that context, open data is widely presumed to have a positive effect on social, environmental and economic value; however the evidence to that effect has remained scarce. Subsequently, we address the question how the use of open data can stimulate the generation of sustainable value. We argue that open data sharing and reuse can empower new ways of generating value in the sharing society. Moreover, we propose a model that describes how different mechanisms that take part within an open system generate sustainable value. These mechanisms are enabled by a number of contextual factors that provide individuals with the motivation, opportunity and ability to generate sustainable value

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    The On-orbit Calibrations for the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope began its on--orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore