1,818 research outputs found

    Evidence of slow-light effects from rotary drag of structured beams

    Get PDF
    Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the Kramers–Kronig relation gives a highly dispersive phase index and a correspondingly high group index

    Exploiting unmeasured disturbance signals in identifiability of linear dynamic networks with partial measurement and partial excitation

    Get PDF
    Identifiability conditions for networks of transfer functions require a sucientnumber of external excitation signals, which are typically measured reference signals. In this abstract, we introduce an equivalent network model structure to address the contribution of unmeasured noises to identifiability analysis in the setting with partial excitation and partial measurement. With this model structure, unmeasured disturbance signals can be exploited as excitation sources, which leads to less conservative identifiability conditions

    Single module identifiability in linear dynamic networks with partial excitation and measurement

    Get PDF
    Identifiability of a single module in a network of transfer functions is determined by whether a particular transfer function in the network can be uniquely distinguished within a network model set, on the basis of data. Whereas previous research has focused on the situations that all network signals are either excited or measured, we develop generalized analysis results for the situation of partial measurement and partial excitation. As identifiability conditions typically require a sufficient number of external excitation signals, this article introduces a novel network model structure such that excitation from unmeasured noise signals is included, which leads to less conservative identifiability conditions than relying on measured excitation signals only. More importantly, graphical conditions are developed to verify global and generic identifiability of a single module based on the topology of the dynamic network. Depending on whether the input or the output of the module can be measured, we present four identifiability conditions which cover all possible situations in single module identification. These conditions further lead to synthesis approaches for allocating excitation signals and selecting measured signals, to warrant single module identifiability. In addition, if the identifiability conditions are satisfied for a sufficient number of external excitation signals only, indirect identification methods are developed to provide a consistent estimate of the module. All the obtained results are also extended to identifiability of multiple modules in the network.</p

    Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the Δ\Delta

    Get PDF
    We analyze the degree to which parity-violating (PV) electroexcitation of the Δ(1232)\Delta(1232) resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial NΔN\to\Delta PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page

    A Necessary Condition for Network Identifiability With Partial Excitation and Measurement

    Get PDF
    This article considers dynamic networks where vertices and edges represent manifest signals and causal dependencies among the signals, respectively. We address the problem of how to determine if the dynamics of a network can be identified when only partial vertices are measured and excited. A necessary condition for network identifiability is presented, where the analysis is performed based on identifying the dependency of a set of rational functions from excited vertices to measured ones. This condition is further characterized by using an edge-removal procedure on the associated bipartite graph. Moreover, on the basis of necessity analysis, we provide a necessary and sufficient condition for identifiability in circular networks.</p

    What Do We Know About the Strange Magnetic Radius?

    Full text link
    We analyze the q^2-dependence of the strange magnetic form factor, \GMS(q^2), using heavy baryon chiral perturbation theory (HBChPT) and dispersion relations. We find that in HBChPT a significant cancellation occurs between the O(p^2) and O(p^3) loop contributions. Consequently, the slope of \GMS at the origin displays an enhanced sensitivity to an unknown O(p^3) low-energy constant. Using dispersion theory, we estimate the magnitude of this constant, show that it may have a natural size, and conclude that the low-q^2 behavior of \GMS could be dominated by nonperturbative physics. We also discuss the implications for the interpretation of parity-violating electron scattering measurements used to measure \GMS(q^2).Comment: 9 pages, Revtex, 2 ps figure

    Laser heating of a sintered oxide superconductor

    Get PDF
    Raman spectroscopy, in which a laser beam serves the dual role of exciting the Raman spectrum and annealing the sample, shows promise as a means of investigating oxygen effects in the oxide superconductors. A technique is described, based on measurements of the ratios of the areas of corresponding peaks in the anti-Stokes and Stokes spectra, whereby the temperature of the illuminated region of the sample can be determined as a function of the power in the incident laser beam. It is found that, for sintered samples of bismuth 2122, a small correction must be made for the departure from thermodynamic equilibrium induced by the pumping effect of the laser beam

    Large Kinetic Power in FRII Radio Jets

    Full text link
    We investigate the total kinetic powers (L_{j}) and ages (t_{age}) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L_{j} to the Eddington luminosity (L_{Edd}) resides in 0.02<Lj/LEdd<100.02 <L_{j}/L_{Edd} <10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon (E_{c}) exceed the energy derived from the minimum energy condition (E_{min}): 2<Ec/Emin<1602< E_{c}/E_{min} <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.Comment: 5 pages, accepted for publication in Astrophysics and Space Scienc

    Філософія права в системі наук

    Get PDF
    Thermosensitive amphiphilic block copolymers self-assemble into micelles above their lower critical solution temperature in water, however, the micelles generally display mediocre physical stability. To stabilize such micelles and increase their loading capacity for chemotherapeutic drugs, block copolymers with novel aromatic monomers were synthesized by free radical polymerization of N-(2-benzoyloxypropyl methacrylamide (HPMAm-Bz) or the corresponding naphthoyl analogue (HPMAm-Nt), with N-(2-hydroxypropyl) methacrylamide monolactate, using a polyethylene glycol based macroinitiator. The critical micelle temperatures and critical micelle concentrations decreased with increasing the HPMAm-Bz/Nt content. The micelles of 30-50 nm were prepared by heating the polymer aqueous solutions from 0 to 50 degrees C and were colloidally stable for at least 48 h at pH 7.4 and 37 degrees C. Paclitaxel and docetaxel encapsulation was performed by mixing drug solutions in ethanol with polymer aqueous solutions and heating from 0 to 50 degrees C. The micelles had a drug loading capacity up to 34 wt % for docetaxel, which is among the highest loadings reported for polymeric micelles, with loaded micelle sizes ranging from 60 to 80 nm. The micelles without aromatic groups almost completely released loaded paclitaxel in 10 days, whereas the HPMAm-Bz/Nt containing micelles released 50% of the paclitaxel at the same time, which showed a better retention for the drug of the latter micelles. (1)H solid-state NMR spectroscopy data are compatible with pi-pi stacking between aromatic groups. The empty micelles demonstrated good cytocompatibility, and paclitaxel-loaded micelles showed high cytotoxicity to tumor cells. In conclusion, the pi-pi stacking effect introduced by aromatic groups increases the stability and loading capacity of polymeric micelles

    Dynamic transition in driven vortices across the peak effect in superconductors

    Full text link
    We study the zero-temperature dynamic transition from the disordered flow to an ordered flow state in driven vortices in type-II superconductors. The transition current IpI_{p} is marked by a sharp kink in the V(I)V(I) characteristic with a concomitant large increase in the defect concentration. On increasing magnetic field BB, the Ip(B)I_{p}(B) follows the behaviour of the critical current Ic(B)I_{c}(B). Specifically, in the peak effect regime Ip(B)I_{p}(B) increases rapidly along with IcI_{c}. We also discuss the effect of varying disorder strength on IpI_{p}.Comment: 4 pages, 4 figure
    corecore