We analyze the q^2-dependence of the strange magnetic form factor, \GMS(q^2),
using heavy baryon chiral perturbation theory (HBChPT) and dispersion
relations. We find that in HBChPT a significant cancellation occurs between the
O(p^2) and O(p^3) loop contributions. Consequently, the slope of \GMS at the
origin displays an enhanced sensitivity to an unknown O(p^3) low-energy
constant. Using dispersion theory, we estimate the magnitude of this constant,
show that it may have a natural size, and conclude that the low-q^2 behavior of
\GMS could be dominated by nonperturbative physics. We also discuss the
implications for the interpretation of parity-violating electron scattering
measurements used to measure \GMS(q^2).Comment: 9 pages, Revtex, 2 ps figure