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with partial measurement and partial
excitation ?

Shengling Shi, Xiaodong Cheng, Paul M. J. Van den Hof

Department of Electrical Engineering, Eindhoven University of
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Abstract: Identifiability conditions for networks of transfer functions require a su�cient
number of external excitation signals, which are typically measured reference signals. In this
abstract, we introduce an equivalent network model structure to address the contribution of
unmeasured noises to identifiability analysis in the setting with partial excitation and partial
measurement. With this model structure, unmeasured disturbance signals can be exploited as
excitation sources, which leads to less conservative identifiability conditions.

1. INTRODUCTION

Due to the increasing complexity of current technological
systems, the study of large-scale interconnected dynamic
systems receives considerable attention. Connecting to
prediction-error identification methods, the most popular
modeling framework is based on a network of transfer
functions as introduced in (Gonçalves and Warnick, 2008;
Van den Hof et al., 2013), where vertices represent the
internal signals that can be measured, and directed edges
denote transfer functions referred to as modules that
represent the causal relations among the signals.

In this abstract we focus on network identifiability, which
is a concept that is independent of a particular identifica-
tion method chosen and reflects the ability to distinguish
between network models in a network model set on the
basis of measurement data. In the literature, there are
two notions of network identifiability: global identifiability
(Weerts et al., 2015, 2018) that requires models to be
distinguishable from all other models in the model set; and
generic identifiability (Bazanella et al., 2017; Hendrickx
et al., 2019; Cheng et al., 2022; Shi et al., 2020a,c) which
requires models to be distinguishable from almost all mod-
els in the model set. The concept of generic identifiability
has been exploited in (Anderson et al., 2016) for multi-
variate autoregressive models and was first introduced in
(Bazanella et al., 2017) for dynamic networks.

Identifiability conditions in the above works require a su�-
cient number of external excitation signals which are typ-
ically measured reference signals (Bazanella et al., 2017;
Hendrickx et al., 2019; Bazanella et al., 2019). On the
other hand, in (Weerts et al., 2018) it is shown that un-
measured noise signals can also serve as excitation sources
for identifiability analysis, which leads to less conservative

?
This project has received funding from the European Research

Council (ERC), Advanced Research Grant SYSDYNET, under the

European Union’s Horizon 2020 research and innovation programme

(grant agreement No 694504).

identifiability conditions than only considering reference
signals. However, this result is obtained when all internal
signals are measured, which is not straightforward to be
extended to a more general situation where not all vertices
are excited and not all vertices are measured, i.e. with
partial measurement and partial excitation. Therefore, this
abstract introduces a novel approach to exploit the con-
tribution of unmeasured noises to identifiability analysis
of dynamic networks. A further implementation of this
result is addressed in (Shi et al., 2020b) to analyze the
identifiability of dynamic networks in this setting.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Dynamic networks

The dynamic network model describes the relation-
ship among internal signals W = {w1(t), · · · , wL(t)},
a vector of measured and deterministic excitation sig-
nals r(t), unmeasured stationary stochastic processes
{v1(t), · · · , vL(t)}, which is formulated as

w(t) = G(q)w(t) +Rr(t) + v(t),
wC(t) = Cw(t), (1)

where G(q) is a matrix of rational transfer operators with
delay operator q�1, i.e. q�1

wi(t) = wi(t�1); C is a binary
matrix which extracts all the measured internal signals in
C ✓ W from w and stacks them into vector wC(t); R is
a binary matrix that decides which internal signals are
influenced by r(t), i.e. each column of R has exactly one
entry as 1 and the other entries as zeros, while its each
row has most one entry as 1.

Let �v(q) of dimension L ⇥ L denote the rational power
spectral density matrix of v(t) with rank p 6 L, and then
a noise model for v(t) can be introduced based on the
spectral factorization of �v(q) as

v(t) = H(q)e(t), (2)
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where e(t) is vector of white noises with covariance matrix
⇤ and dimension either L or p (Weerts et al., 2018; Gevers
et al., 2019); H(q) is proper and stable. Combining (1)
and (2) leads to a complete network model specified as
a quintuple M , (G(q), R, C,H(q),⇤), on which the
following assumptions are made:

Assumption 1. It will be assumed that

(a) G(q) is proper, and its diagonal entries are zeros;
(b) [I �G(q)]�1 is stable;
(c) The network is well-posed in the sense that all prin-

cipal minors of limz!1(I �G(z)) are non-zero;
(d) H(q) is proper and stable;
(e) ⇤ is real and positive semi-definite.

Note that Assumption 1(c) ensures that every principal
submatrix of (I �G) has a proper inverse (Scherer, 2001),
i.e. every closed-loop transfer function is proper.

In a network model, both the excitation signals r and
the noise signals e are called external signals which are
collected in the set X . The entries in G(q) are referred
to as modules. Let set Z = W \ C contain all the
unmeasured internal signals, and without loss of generality,

w is ordered as w =
⇥
w

>
C w

>
Z
⇤>

, where wC and wZ
correspond to the measured and the unmeasured internal
signals. Accordingly, C is partitioned as C = [I 0] .

The external-to-internal mapping of (1) is

wC = C(I �G)�1
Rr + C(I �G)�1

He, (3)

and a standard open-loop identification of the above model
can lead to consistent estimates of the following objects:

CTR, C�CT
, (4)

where T , (I�G)�1, � , (I�G)�1
H⇤H?(I�G)�?, and

H(z)? denotes H>(z�1). Thus, an identifiability question
arises to determine the uniqueness of modules in G(q)
given the objects in (4). Note that CTR leads to a subset
of rows and columns of T , respectively, based on which
internal signals are measured or excited.

Assumption 2. The spectrum C�(z)CT has full rank.

2.2 Model sets and identifiability

Network identifiability is defined based on a network model
set whose definition is given first. For a network model
M , its transfer operators in G and H are parametrized
as rational functions of q (Ljung, 1997), and parame-
ter vector ✓ collects the coe�cients of the denominator
and the numerator polynomial of each transfer function,
as well as the parametrized entries in the matrix ⇤.
Then the parameterized model is denoted by M(✓) =
(G(q, ✓), R, C,H(q, ✓),⇤(✓)), where ✓ belongs to a param-
eter space ⇥ that is an open and connected subset of
Rn, and M(✓) is an analytic function of q and ✓. This
leads to a network model set M , {M(✓)|✓ 2 ⇥}, where
every element in M satisfies Assumption 1. Note that the
dependency of transfer matrices on q and ✓ is often omitted
for the simplicity of notation.

Concerning network identifiability, we follow the concept
of global network identifiability as defined in (Weerts et al.,
2018) and also consider its generic version obtained by
combining it with the concept of generic identifiability

introduced in (Bazanella et al., 2017; Hendrickx et al.,
2019) for a di↵erent setting. In this respect, we follow an
approach that is formulated in (Shi et al., 2020a,c).
Definition 1. Given a parameterized network model set
M, consider ✓0 2 ⇥ and the following implication:

CT (z, ✓0)R = CT (z, ✓1)R
C�(z, ✓0)C> = C�(z, ✓1)C>

�
) Gji(z, ✓0) = Gji(z, ✓1),

(5)
for all ✓1 2 ⇥. Then module Gji is generically identifiable

in M from (wC , r) if the (5) holds for almost all ✓0 2 ⇥.

In the above definition, the notion “almost all” excludes a
subset of Lebesgue measure zero from ⇥. The concept of
identifiability in this definition concerns the uniqueness of
a module given the first and second moment information
of the measured signals. If the module is not identifiable in
the model set, no identification method, that relies on the
first and the second moments for estimating the module,
is able to provide a unique estimate of the module.

It is worth mentioning that this work considers identifiabil-
ity of network modules instead of the identifiability of their
parameters. Given the unique rational transfer functions,
the identifiability of their parameters is a classical topic
and can be achieved by appropriate parameterization of
these transfer functions (Ljung, 1997).

2.3 Problem formulation

Identifiability conditions typically require a su�cient num-
ber of r signals as excitation sources. Moreover, it is shown
in (Weerts et al., 2018) that when all the internal signals
are measured, i.e. C = I, the spectrum matrix � in (4)
admits a unique spectral factor TH under mild conditions,
and thus implication (5) can be equivalently simplified
by considering (TR, TH) in the LHS of (5) instead of
(TR,�). Since the mapping from the noises to internal
signals is also used, the noises play the same role as r(t)
for identifiability analysis. However, when only a subset of
internal signals is measured, the above result cannot be
applied anymore as only submatrix C�C> of � is taken
as a starting point in Definition 1. Thus, the question is
how noise signals can be used as excitation sources for
identifiability analysis in the current setting.

3. MAIN RESULTS

We first introduce the concept of network equivalence and
then develop an equivalent network by exploiting the noise
spectrum C�C>. With the developed model structure,
unmeasured noises can be taken into account as excitation
sources in the identifiability analysis.

3.1 Equivalent network for noise excitation

Identifiability concept in (5) takes the object (CTR,C�C>)
as a starting point that reflects the first and the second mo-
ment of the measured signals. Therefore, we can define a
concept of network equivalence based on the above object,
by extending a similar concept in (Weerts et al., 2020).
Definition 2. Network models M1 = (G1, R1, C1, H1,⇤1)
and M2 = (G2, R2, C2, H2,⇤2) are said to be (observation-
ally) equivalent if it holds that

C1T1(z)R1 = C2T2(z)R2, and C1�1(z)C
T
1 = C2�2(z)C

T
2 ,
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where T and � are defined in (4).

The above concept of equivalence characterizes two net-
work models that can be used to model the same measured
processes (wC , r), because given measured r, the stochastic
processes wC in two equivalent models have the same mean
CTRr and power spectrum C�C>. Given any network
model M , it always admits an equivalent network with a
simpler noise model, as shown in the following result.

Theorem 1. Any network model M = (G,R,C,H,⇤)
admits an equivalent network model as

M̃ , (G,R,C,
⇥
H̃

? 0
⇤?

, ⇤̃), (6)

where H̃ 2 R(q)c⇥c, with c = |C|, is minimum phase,
monic, and ⇤̃ 2 Rc⇥c is positive semi-definite.

Proof. We first exploit the structure of the noise spec-
trum C�C> of M . Based on the measured signals wC ,
an immersed network model, which only represents the
behavior of the measured signals, can be obtained by
eliminating the unmeasured signals (Dankers et al., 2016).
We first define that

Ḡ , GCC +GCZ(I �GZZ)
�1

GZC

H̄ , HC +GCZ(I �GZZ)
�1

HZ ,

and R̄ similarly, where, for example, GCZ represents the
submatrix of G that has its rows and columns correspond-
ing to the signals in C and Z, respectively. Then the
immersed network model has the following form:

wC = ḠwC + R̄r(t) + H̄e(t).

Note that (I�Ḡ) has a proper inverse because of Assump-
tion 1(c) and consequently (I � Ḡ

1) being full rank. This
model further leads to an external-to-internal mapping:

wC = (I � Ḡ)�1
R̄r(t) + (I � Ḡ)�1

H̄e(t). (7)

Based on (3) and (7), it can be found that

C�CT = (I � Ḡ)�1
H̄⇤H̄⇤(I � Ḡ)�⇤

, (8)

where it holds that

C(I �G)�1
C

T = (I � Ḡ)�1
. (9)

Moreover, H̄⇤H̄? can be re-factorized into H̃⇤̃H̃? (Gevers
et al., 2019), which together with (8) and (9) leads to

C�CT = C(I �G)�1


H̃

0

�
⇤̃
⇥
H̃

? 0
⇤
(I �G)�⇤

C
T
.

The above equation implies that the external-to-output
mapping of (6), i.e.

wC = C(I �G)�1
Rr + C(I �G)�1


H̃

0

�
ẽ,

leads to the same object (CTR,C�C>) as (3). ⌅

Based on the above result, the measured process (wC , r)
modeled by M can also be equivalently modeled by M̃

in (6), which has noise-free unmeasured internal signals
and a transformed noise signal ẽ with covariance matrix
⇤̃. This noise model is simpler than the one in M . More
importantly, M̃ keeps the same G, R, C matrices as in M .
This invariance of G is important for the identifiability
analysis and the identification of network modules.

The equivalence between M and M̃ is obtained due to
the freedom in transforming the unmeasured internal
signals and modeling the noises, since the objects in (4)

only reflects the properties of the measured processes.
Therefore, M̃ may describe di↵erent unmeasured processes
from wZ in M due to the possible change in its stochastic
properties. However, for the simplicity of notation, we still
use wZ and X to denote the unmeasured internal signals
and the external signals in M̃ , respectively.

3.2 Identifiability for the equivalent network

Since a network M and its corresponding M̃ are equivalent
and contain the same G matrix, both of them can be used
to model the same data set, i.e. the measured (wC , r), for
the identification of the modules in a dynamic network
(1). In the previous section, it is discussed that M̃ in
(6) can potentially be a better option due to its simpler
noise model. In this section, we further show that the noise
model of M̃ is also beneficial for the identifiability analysis.

From now on, let M denote a model set obtained from the
parameterization of M̃ with a parameter ✓, as described
in Section 2.2. It can be found that under mild conditions,
the power spectrum C�CT of M̃ admits a unique spectral
factor T

⇥
H̃

? 0
⇤?
, which implies that the identifiability

concept can be simplified as follows.

Assumption 3. In network model set M, G(q, ✓) is param-
eterized to be strictly proper.

Proposition 1. For a network model set M that satisfies
Assumptions 2, 3 and defining

TWX , (I �G)�1
X, X , [R


H̃

0

�
], (10)

implication (5) for M can be equivalently formulated as

CTWX (q, ✓0) = CTWX (q, ✓1) ) Gji(✓0) = Gji(✓1), (11)

for all ✓1 2 ⇥.

Proof. The proof is analogous to the proof for Proposi-
tion 1 in (Weerts et al., 2018). ⌅

The above result indicates that the mappings from both
r and ẽ to the measured internal signals can be used for
analyzing identifiability in M, and thus the unmeasured
noise signal ẽ plays the same role as the measured r(t)
for the identifiability analysis. In this case, we say that ẽ

acts as excitation sources for the identifiability analysis.
By contrast, when a model set of a general network model
is considered, the simplification in Proposition 1 cannot be
achieved, and thus identifiability of this model set involves
spectrum C�C> and the mapping from r to wC , i.e. only
r signals can be used as excitation signals as considered in
(Hendrickx et al., 2019; Bazanella et al., 2019).

3.3 Consequence for the graphical identifiability test

Due to the advantages of M̃ over a general model M , we
regard the model set M of M̃ as the standard network
model set for identifying the modules in the setting with
partial measurement and partial excitation.

A graphical identifiability test is developed to show
the consequence of using M. Some entries in matrices
G(q, ✓), R, H̃(q, ✓) in M may be fixed to zeros, which
reflect the modeling assumptions of the user; and the non-
zero entries in G and H are parameterized by ✓.
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Assumption 4. The transfer functions in M are parame-
terized independently.

The sparsity patterns of the network matrices in M lead
to a graphical representation G of M, with a vertex set
V , X [ W , which denotes all the external and internal
signals, and the set of directed edges E representing the
entries that are not fixed to zero, e.g., a directed edge
from wi to wj exists i↵ Gji(q, ✓) is not fixed to zero.

In addition, we introduce several graphical concepts. Given
two vertex sets V1 and V2, a vertex set D is said to be a
V1 � V2 disconnecting set if D intersects all the directed
paths from V1 to V2. Two directed paths are vertex disjoint
if they do not share any vertex, including the starting and
ending vertices. We use bV1!V2 to denote the maximum
number of vertex disjoint paths from V1 to V2. The link
between vertex disjoint paths and generic identifiability is
originally investigated in (Hendrickx et al., 2019), for the
setting where all internal signals are excited by r signals.

Having the above graphical concepts, a graphical test
for generic identifiability of a single module with partial
excitation and partial measurement can be obtained.

Theorem 2. Consider a model set M that satisfies As-
sumptions 2, 3, 4, where set N�

j contains all inputs of
wj in W and set Xj contains all r signals and the noises
without directed edges to wj . Then Gji is generically iden-
tifiable in M from (wC , r) if there exists a Xj �N�

j \ {wi}
disconnecting set D ✓ W such that

(1) bXj!{wi}[D = |D|+ 1;
(2) {wi, wj} [D ✓ C.

Proof. This result is a direct extension of Theorem 4 in
(Shi et al., 2020c) which assumes all internal signals are
measured, and thus the proof is omitted. ⌅

The above result shows that when the output wj is
measured, it is su�cient to measure and excite the signals
in {wi} [D instead of all the inputs of wj . Disconnecting
sets can be computed by standard graphical algorithms
(Schrijver, 2003). More importantly, by making use of
M̃ , the excitation for {wi} [ D comes from both r and
unmeasured ẽ. By contrast, we can consider only r signals
when a general model set is considered.

4. CONCLUSIONS

We have developed an approach to exploit noise excitation
for identifiability analysis of linear dynamic networks, in
the setting with partial measurement and partial excita-
tion. By introducing the concept of equivalent networks, a
novel network model structure has been developed, based
on which the unmeasured noises have been exploited as
excitation sources in the identifiability analysis.
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