153 research outputs found

    Cyclic oxidation of yttrium/ytterbium disilicate environmental barrier coatings

    Get PDF
    Please click Additional Files below to see the full abstract

    Intra- and inter-annual uranium concentration variability in a Belizean stalagmite controlled by prior aragonite precipitation: A new tool for reconstructing hydro-climate using aragonitic speleothems

    Get PDF
    Aragonitic speleothems are increasingly utilised as palaeoclimate archives due to their amenability to high precision U–Th dating. Proxy records from fast-growing aragonitic stalagmites, precisely dated to annual timescales, can allow investigation of climatic events occurring on annual or even sub-annual timescales with minimal chronological uncertainty. However, the behaviour of many trace elements, such as uranium, in aragonitic speleothems has not thus far been as well constrained as in calcitic speleothems. Here, we use uranium concentration shifts measured across primary calcite-to-aragonite mineralogical transitions in speleothems to calculate the distribution coefficient of uranium in aragonitic speleothems (derived DU = 3.74 ± 1.13). Because our calculated DU is considerably above 1 increased prior aragonite precipitation due to increased karst water residence time should strongly control stalagmite aragonite U/Ca values. Consequently, uranium concentrations in aragonitic speleothems should act as excellent proxies for effective rainfall. We test this using a high-resolution ICP-MS derived trace element dataset from a Belizean stalagmite. YOK-G is an aragonitic stalagmite from Yok Balum cave in Belize with an extremely robust monthly-resolved chronology built using annual δ13C cycles. We interpret seasonal U/Ca variations in YOK-G as reflecting changes in the amount and seasonality of prior aragonite precipitation driven by variable rainfall amounts. The U/Ca record strongly suggests that modern drying has occurred in Belize, and that this drying was primarily caused by a reduction in wet season rainfall. This is consistent with published stable isotope data from YOK-G also very strongly suggesting modern rainfall reductions, previously interpreted as the result of southward ITCZ displacement. Our results strongly suggest that U/Ca values in aragonitic speleothems are excellent proxies for rainfall variability. This new tool, combined with the exceptional chronological control characteristic of aragonitic stalagmites and the high spatial resolution afforded by modern microanalytical techniques, should facilitate the construction of new exquisitely resolved rainfall records, providing rare insights into seasonality changes as well as long-term changes in local recharge conditions

    T-cell regulation in Erythema Nodosum Leprosum.

    Get PDF
    Leprosy is a disease caused by Mycobacterium leprae where the clinical spectrum correlates with the patient immune response. Erythema Nodosum Leprosum (ENL) is an immune-mediated inflammatory complication, which causes significant morbidity in affected leprosy patients. The underlying cause of ENL is not conclusively known. However, immune-complexes and cell-mediated immunity have been suggested in the pathogenesis of ENL. The aim of this study was to investigate the regulatory T-cells in patients with ENL. Forty-six untreated patients with ENL and 31 non-reactional lepromatous leprosy (LL) patient controls visiting ALERT Hospital, Ethiopia were enrolled to the study. Blood samples were obtained before, during and after prednisolone treatment of ENL cases. Peripheral blood mononuclear cells (PBMCs) were isolated and used for immunophenotyping of regulatory T-cells by flow cytometry. Five markers: CD3, CD4 or CD8, CD25, CD27 and FoxP3 were used to define CD4+ and CD8+ regulatory T-cells. Clinical and histopathological data were obtained as supplementary information. All patients had been followed for 28 weeks. Patients with ENL reactions had a lower percentage of CD4+ regulatory T-cells (1.7%) than LL patient controls (3.8%) at diagnosis of ENL before treatment. After treatment, the percentage of CD4+regulatory T-cells was not significantly different between the two groups. The percentage of CD8+ regulatory T-cells was not significantly different in ENL and LL controls before and after treatment. Furthermore, patients with ENL had higher percentage of CD4+ T-ells and CD4+/CD8+ T-cells ratio than LL patient controls before treatment. The expression of CD25 on CD4+ and CD8+ T-cells was not significantly different in ENL and LL controls suggesting that CD25 expression is not associated with ENL reactions while FoxP3 expression on CD4+ T-cells was significantly lower in patients with ENL than in LL controls. We also found that prednisolone treatment of patients with ENL reactions suppresses CD4+ T-cell but not CD8+ T-cell frequencies. Hence, ENL is associated with lower levels of T regulatory cells and higher CD4+/CD8+ T-cell ratio. We suggest that this loss of regulation is one of the causes of ENL

    Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?

    Get PDF
    External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials
    corecore