139 research outputs found
Jet disc coupling in black hole binaries
In the last decade multi-wavelength observations have demonstrated the
importance of jets in the energy output of accreting black hole binaries. The
observed correlations between the presence of a jet and the state of the
accretion flow provide important information on the coupling between accretion
and ejection processes. After a brief review of the properties of black hole
binaries, I illustrate the connection between accretion and ejection through
two particularly interesting examples. First, an INTEGRAL observation of Cygnus
X-1 during a 'mini-' state transition reveals disc jet coupling on time scales
of orders of hours. Second, the black hole XTEJ1118+480 shows complex
correlations between the X-ray and optical emission. Those correlations are
interpreted in terms of coupling between disc and jet on time scales of seconds
or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets -
from Planets to Quasars. Accepted for publication in Astrophysics & Space
Scienc
The balance of power: accretion and feedback in stellar mass black holes
In this review we discuss the population of stellar-mass black holes in our
galaxy and beyond, which are the extreme endpoints of massive star evolution.
In particular we focus on how we can attempt to balance the available accretion
energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole
spin and advection. We review quantitatively the methods which are used to
estimate these quantities, regardless of the details of the astrophysics close
to the black hole. Once these methods have been outlined, we work through an
outburst of a black hole X-ray binary system, estimating the flow of mass and
energy through the different accretion rates and states. While we focus on
feedback from stellar mass black holes in X-ray binary systems, we also
consider the applicability of what we have learned to supermassive black holes
in active galactic nuclei. As an important control sample we also review the
coupling between accretion and feedback in neutron stars, and show that it is
very similar to that observed in black holes, which strongly constrains how
much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture
Notes in Physics. Springer 201
Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei
At luminosities below a few percent of Eddington, accreting black holes
switch to a hard spectral state which is very different from the soft
blackbody-like spectral state that is found at higher luminosities. The hard
state is well-described by a two-temperature, optically thin, geometrically
thick, advection-dominated accretion flow (ADAF) in which the ions are
extremely hot (up to K near the black hole), the electrons are also
hot ( K), and thermal Comptonization dominates the X-ray
emission. The radiative efficiency of an ADAF decreases rapidly with decreasing
mass accretion rate, becoming extremely low when a source reaches quiescence.
ADAFs are expected to have strong outflows, which may explain why relativistic
jets are often inferred from the radio emission of these sources. It has been
suggested that most of the X-ray emission also comes from a jet, but this is
less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on
All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as
a special edition of "Astrophysics and Space Science" by Kluwe
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
Formation of stars and planets: the role of magnetic fields
Star formation is thought to be triggered by gravitational collapse of the
dense cores of molecular clouds. Angular momentum conservation during the
collapse results in the progressive increase of the centrifugal force, which
eventually halts the inflow of material and leads to the development of a
central mass surrounded by a disc. In the presence of an angular momentum
transport mechanism, mass accretion onto the central object proceeds through
this disc, and it is believed that this is how stars typically gain most of
their mass. However, the mechanisms responsible for this transport of angular
momentum are not well understood. Although the gravitational field of a
companion star or even gravitational instabilities (particularly in massive
discs) may play a role, the most general mechanisms are turbulence viscosity
driven by the magnetorotational instability (MRI), and outflows accelerated
centrifugally from the surfaces of the disc. Both processes are powered by the
action of magnetic fields and are, in turn, likely to strongly affect the
structure, dynamics, evolutionary path and planet-forming capabilities of their
host discs. The weak ionisation of protostellar discs, however, may prevent the
magnetic field from effectively coupling to the gas and shear and driving these
processes. Here I examine the viability and properties of these
magnetically-driven processes in protostellar discs. The results indicate that,
despite the weak ionisation, the magnetic field is able to couple to the gas
and shear for fluid conditions thought to be satisfied over a wide range of
radii in these discs.Comment: Invited Review. 11 figures and 1 table. Accepted for publication in
Astrophysics & Space Scienc
Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A Review.
The incidence of early-onset colorectal cancer (younger than 50 years) is rising globally, the reasons for which are unclear. It appears to represent a unique disease process with different clinical, pathological, and molecular characteristics compared with late-onset colorectal cancer. Data on oncological outcomes are limited, and sensitivity to conventional neoadjuvant and adjuvant therapy regimens appear to be unknown. The purpose of this review is to summarize the available literature on early-onset colorectal cancer.
Within the next decade, it is estimated that 1 in 10 colon cancers and 1 in 4 rectal cancers will be diagnosed in adults younger than 50 years. Potential risk factors include a Westernized diet, obesity, antibiotic usage, and alterations in the gut microbiome. Although genetic predisposition plays a role, most cases are sporadic. The full spectrum of germline and somatic sequence variations implicated remains unknown. Younger patients typically present with descending colonic or rectal cancer, advanced disease stage, and unfavorable histopathological features. Despite being more likely to receive neoadjuvant and adjuvant therapy, patients with early-onset disease demonstrate comparable oncological outcomes with their older counterparts.
The clinicopathological features, underlying molecular profiles, and drivers of early-onset colorectal cancer differ from those of late-onset disease. Standardized, age-specific preventive, screening, diagnostic, and therapeutic strategies are required to optimize outcomes
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
- …