1,984 research outputs found

    High performance subgraph mining in molecular compounds

    Get PDF
    Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations

    Enhanced Detection of Thromboemboli With the Use of Targeted Microbubbles

    Get PDF

    How Volatile is ENSO for Global Greenhouse Gas Emissions and the Global Economy?

    Get PDF
    This paper analyzes two indexes in order to capture the volatility inherent in El Niños Southern Oscillations (ENSO), develops the relationship between the strength of ENSO and greenhouse gas emissions, which increase as the economy grows, with carbon dioxide being the major greenhouse gas, and examines how these gases affect the frequency and strength of El Niño on the global economy. The empirical results show that both the ARMA(1,1)-GARCH(1,1) and ARMA(3,2)-GJR(1,1) models are suitable for modelling ENSO volatility accurately, and that 1998 is a turning point, which indicates that the ENSO strength has increased since 1998. Moreover, the increasing ENSO strength is due to the increase in greenhouse gas emissions. The ENSO strengths for Sea Surface Temperature (SST) are predicted for the year 2030 to increase from 29.62% to 81.5% if global CO2 emissions increase by 40% to 110%, respectively. This indicates that we will be faced with even stronger El Nino or La Nina effects in the future if global greenhouse gas emissions continue to increase unabated

    Modelling the Effects of Oil Prices on Global Fertilizer Prices and Volatility

    Get PDF
    The main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer prices in both the mean and volatility. The endogenous structural breakpoint unit root test, ARDL model, and alternative volatility models, including GARCH, EGARCH, and GJR models, are used to investigate the relationship between crude oil price and six global fertilizer prices. The empirical results from ARDL show that most fertilizer prices are significantly affected by the crude oil price while the volatility of global fertilizer prices and crude oil price from March to December 2008 are higher than in other periods

    Modeling the Volatility in Global Fertilizer Prices

    Get PDF
    The main purpose of this paper is to estimate the volatility in global fertilizer prices. The endogenous structural breakpoint unit root test and alternative volatility models, including the generalized autoregressive conditional heteroskedasticity (GARCH) model, Exponential GARCH (EGARCH) model, and GJR model are estimated for six global fertilizer prices and the crude oil price. Weekly data for 2003-2008 for the seven price series are analysed. The empirical results suggest that the volatility of global fertilizer prices and crude oil price from March to December 2008 are higher than in other periods, and that the peak crude oil price caused greater volatility in the crude oil price and global fertilizer prices

    Modeling the Effect of Oil Price on Global Fertilizer Prices

    Get PDF
    The main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer prices in both the mean and volatility. The endogenous structural breakpoint unit root test, the autoregressive distributed lag (ARDL) model, and alternative volatility models, including the generalized autoregressive conditional heteroskedasticity (GARCH) model, Exponential GARCH (EGARCH) model, and GJR model, are used to investigate the relationship between crude oil price and six global fertilizer prices. Weekly data for 2003-2008 for the seven price series are analyzed. The empirical results from ARDL show that most fertilizer prices are significantly affected by the crude oil price, which explains why global fertilizer prices reached a peak in 2008. We also find that that the volatility of global fertilizer prices and crude oil price from March to December 2008 are higher than in other periods, and that the peak crude oil price caused greater volatility in the crude oil price and global fertilizer prices. As volatility invokes financial risk, the relationship between oil price and global fertilizer prices and their associated volatility is important for public policy relating to the development of optimal energy use, global agricultural production, and financial integration

    The complete chloroplast genome of pearl millet (Pennisetum glaucum (L.) R. Br.) and comparative analysis within the family poaceae

    Get PDF
    The complete chloroplast (cp) genome sequence of Pearl millet (Pennisetum glaucum [L.] R. Br.), an important grain and forage crop in the family Poaceae, is reported in this study. The complete cp genome sequence of P. glaucum is 138,172 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeat (IR) regions (22,275 bp) separated by a small single-copy (SSC) region (12,409 bp) and a large single-copy (LSC) region (81,213). The P. glaucum cp genome encodes 110 unique genes, 76 of which are protein-coding genes, 4 ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes and 18 duplicated genes in the IR region. Nine genes contain one or two introns. Whole genome alignments of cp genome were performed for genome-wide comparison. Locally collinear blocks (LCBs) identified among the cp genomes showed that they were well conserved with respect to gene organization and order. This newly determined cp genome sequence of P. glaucum will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae

    An econometric analysis of SARS and Avian flu on international tourist arrivals to Asia

    Get PDF
    This paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu will be compared directly according to human deaths. The nature of the short run and long run relationship is examined empirically by estimating a static line fixed effect model and a difference transformation dynamic model, respectively. Empirical results from the static fixed effect and difference transformation dynamic models are consistent, and indicate that both the short run and long run SARS effect have a more significant impact on international tourist arrivals than does Avian Flu. In addition, the effects of deaths arising from both SARS and Avian Flu suggest that SARS is more important to international tourist arrivals than is Avian Flu. Thus, while Avian Flu is here to stay, its effect is currently not as significant as that of SARS

    The magnetic moments of 'Lambda_b' and 'Lambda_c' baryons in light cone QCD sum rules

    Full text link
    Using the most general form of the interpolating currents of heavy baryons, the magnetic moments of heavy baryons "Lambda_Q (Q=b,c)" are calculated in framework of the light cone QCD sum rules. A comparison of our results on magnetic moments with the existing theoretical results calculated in various other frameworks are presented.Comment: 14 pp, 6 figures (postscript formatted), LaTex formatte

    Connecting LHC, ILC, and Quintessence

    Get PDF
    If the cold dark matter consists of weakly interacting massive particles (WIMPs), anticipated measurements of the WIMP properties at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) will provide an unprecedented experimental probe of cosmology at temperatures of order 1 GeV. It is worth emphasizing that the expected outcome of these tests may or may not be consistent with the picture of standard cosmology. For example, in kination-dominated quintessence models of dark energy, the dark matter relic abundance can be significantly enhanced compared to that obtained from freeze out in a radiation-dominated universe. Collider measurements then will simultaneously probe both dark matter and dark energy. In this article, we investigate the precision to which the LHC and ILC can determine the dark matter and dark energy parameters under those circumstances. We use an illustrative set of four benchmark points in minimal supergravity in analogy with the four LCC benchmark points. The precision achievable together at the LHC and ILC is sufficient to discover kination-dominated quintessence, under the assumption that the WIMPs are the only dark matter component. The LHC and ILC can thus play important roles as alternative probes of both dark matter and dark energy.Comment: 38 pages, 9 figure
    corecore