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Abstract 

 

The main purpose of this paper is to estimate the volatility in global fertilizer prices. The 

endogenous structural breakpoint unit root test and alternative volatility models, 

including the generalized autoregressive conditional heteroskedasticity (GARCH) 

model, Exponential GARCH (EGARCH) model, and GJR model are estimated for six 

global fertilizer prices and the crude oil price. Weekly data for 2003-2008 for the seven 

price series are analysed. The empirical results suggest that the volatility of global 

fertilizer prices and crude oil price from March to December 2008 are higher than in 

other periods, and that the peak crude oil price caused greater volatility in the crude oil 

price and global fertilizer prices.  

 

Keywords: Volatility, Global fertilizer price, Crude oil price, Non-renewable fertilizers, 

Structural breakpoint unit root test.
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I. Introduction 

The world population in 2000 was more than 6 billion, and is expected to reach 8 

billion in 2025, based on projections by United Nation Population Division. The 

increase in global population, combined with economic development, will place 

increasing demand on agricultural food products, especially grains, rice, soybeans, and 

sugarcane. The derived demand for energy crops has been increased significantly due to 

the development of bio-fuel. Such development can lead to food shortages and 

increasing international food prices, which will encourage farmers to expand planted 

acreage. This predicament has increased the derived demand for global fertilizers and 

increased fertilizer prices.  

Fertilizers are combinations of nutrients that enable plants to grow. The essential 

elements of fertilizers are nitrogen, phosphorus, and potassium. Urea fertilizer is the 

major fertilizer that provides the element of nitrogen, and is produced through 

converting atmospheric nitrogen using natural gas. Ammonia and phosphoric acid are 

also produced using energy. Thus, prices for urea, ammonia, and acid will be affected by 

energy prices. Monoammonium phosphate (hereafter MAP) and muriate of potash 

(hereafter MOP) are two other important fertilizers that are sources of phosphorus and 

potassium. As most of the world’s phosphate for fertilizer is mined, and hence is 

non-renewable, over the last decade the prices of phosphate and potash fertilizers have 

risen more steeply than the price of nitrogen-based urea.   

Figure 1 shows the trends in six fertilizer prices and Dubai crude oil price during 

the period 2003-2008. It is clear that most of these prices changed dramatically in 2007 

and 2008. Figure 2 shows the trends in the prices of the main fertilizers, including MAP, 

MOP and urea, and Dubai crude oil weekly prices, from 2003-2008. This figure shows 

that fertilizers and Dubai crude oil price exhibit positive trends. Moreover, MAP and 

MOP prices had upsurge in early 2008. These figures show there is a clear positive 
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relationship between global fertilizer prices and crude oil price. The main purpose of 

this paper is to estimate the volatility in global fertilizer prices and in the crude oil price. 

Such empirical results should provide useful information regarding the risk associated 

with variations in global fertilizer prices, with significant implications for global 

agricultural production.  

The remainder of the paper is organized as follows. Section 2 introduces the data, 

the empirical models are discussed in Section 3, and the empirical results are analysed 

in Section 4. Some concluding remarks related to the policy implications of the 

volatility of global fertilizer prices are given in the final section. 

 

II. Data  

The source of the data is divided into two parts. The weekly global fertilizer supply 

prices are obtained from the Fertilizer Market Bulletin (hereafter FMB) weekly 

fertilizer report, while the weekly Dubai crude oil prices are obtained from the database 

in the Bureau of Energy during the period 2003-2008. Table 1 gives the descriptive 

statistics of six fertilizer prices, including monoammonium phosphate, urea, ammonia, 

phosphoric acid, phosphate rock, and potassium chloride, and Dubai crude oil prices. 

The monoammonium phosphate prices show a steady upward trend, but have a sharp 

price spike in February 2008, as shown in Figure 1. The prices of urea and ammonia 

vary considerably, with steady increases over time. The phosphoric acid, phosphate 

rock, and potassium chloride supply prices do not fluctuate significantly, but generally 

have upward trends. The trend in crude oil prices is relatively stable.  

 

III. Model Specifications 

    The generalized autoregressive conditional heteroskedasticity (GARCH) model 

will be used to model the volatility in global fertilizer and crude oil prices. Before 
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estimating the GARCH models, the Lee and Strazicich (2003) approach will be used to 

capture the structural breakpoint in fertilizer prices, which should enable identification 

of alternative time periods for the volatility in fertilizer prices. 

 

3.1 Minimum LM unit root test with two endogenous breaks 

Most traditional empirical studies use regression methods to estimate relationships 

among variables under the assumption of stationarity. However, spurious regression 

results may arise when some or all of the variables are non-stationary. The 

Dickey-Fuller (1979, 1981) test, Augmented Dickey-Fuller (ADF) test (Said and 

Dickey, 1984), and Phillips-Perron (1988) test are widely-used unit root tests, but they 

are based on data generation processes with no structural breaks. Ignoring possible 

structural breaks can lead to non-rejection of the null hypothesis of non-stationarity, so 

that the effects of structural breaks may be attributed to the existence of a unit root. 

Nelson and Plosser (1982) used the Dickey-Fuller unit root test to examine U.S. 

macroeconomic time series, and found that widespread non-stationarity.  

In order to tackle the problem of structural breaks, Perron (1989) proposed a unit 

root test with a structural breakpoint, which used an exogenous structural break to 

re-examine Nelson and Plosser’s (1982) data. The empirical results showed that most 

macroeconomic time series do not have unit roots, and the data features displayed by 

variables with a structural change are similar to those displayed by variables with unit 

roots. Thus, it is important to test for structural change, otherwise an incorrect outcome 

of the unit root test is likely. 

Banerjee et al. (1992) and Zivot and Andrews (1992) modified the unit root test with 

a known breakpoint to a unit root test with an unknown breakpoint. Lumsdaine and 

Papell (1997) and Lee and Strazicich (2003) transformed the unit root test with an 

unknown breakpoint into a unit root test with two unknown breakpoints. However, Lee 
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and Strazicich (2003) establish minimum LM unit root test with two unknown structural 

change points to compensate for the shortcomings of the test. Both the null and 

alternative hypotheses are specified for series with two endogenous structural 

breakpoints.   

 

3.2 Conditional Mean and Conditional Volatility Models 

Engle (1982) captured time-varying volatility through the autoregressive 

conditional heteroskedasticity (ARCH) model. Subsequent extensions, such as the 

generalized ARCH (GARCH) model of Bollerslev (1986), have been used to capture 

dynamic volatility for univariate and multivariate processes. The GARCH model is 

most widely used for symmetric shocks. In the presence of asymmetric shocks, whereby 

positive and negative shocks of equal magnitude have different impacts on volatility, the 

GJR model of Glosten et al. (1992) and the EGARCH model of Nelson (1991) are very 

useful. Further theoretical developments in specification, estimation and asymptotic 

theory have been suggested in Ling and Li (1997), Ling and McAleer (2002a, 2002b, 

2003a, 2003b), and McAleer (2005).  

The following model is based on McAleer (2005) and McAleer et al. (2007). The 

methods have been extended detect the volatility in patent growth (Chan, Marinova and 

McAleer, 2005a), in analyzing the volatility of USA ecological patents (Marinova and 

McAleer, 2003; Chan, Marinova and McAleer, 2005b), in modelling the volatility of 

environment risk (Hoti, McAleer and Pauwels, 2005), and the volatility of atmospheric 

carbon dioxide concentrations (McAleer and Chan, 2006). However, there does not yet 

seem to have been any empirical analysis of such volatility models on global fertilizer 

prices.  

In this paper, we consider the stationary AR(1)-GARCH(1,1), or 

ARMA(p,q)-GARCH(1,1), model for the global fertilizer price series data, namely ty : 
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1 2 1 ,t t ty y         for 1,..., ,t n                           (1) 

( , )t ty ARMA p q    

 

where t  is the unconditional shock (or movement in global fertilizer prices), and is 

given by: 
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and   0, 0  , 0   are sufficient conditions to ensure that the conditional variance 

0th  . Ling and McAleer (2003b) indicated equation (2) in the AR(1) process could be 

modified to incorporate a non-stationary ARMA(p,q) conditional mean and a stationary 

GARCH(r,s) conditional variance. In (2), the   (or ARCH) effect indicates the short 

run persistence of shocks, while the   (or GARCH) effect indicates the contribution of 

shocks to long run persistence (namely,   ).  

    The parameters in equations (1) and (2) are typically estimated by the maximum 

likelihood method. Ling and McAleer (2003b) investigate the properties of adaptive 

estimators for univariate non-stationary ARMA models with GARCH(r,s) errors. The 

conditional log-likelihood function is given as follows: 
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As the GARCH process in equation (2) is a function of the unconditional shocks, the 

moments of t  need to be investigated. Ling and Li (1997) showed that the ARCH(p,q) 
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model is strictly stationary and ergodic if the second moment is finite, that is, 

2 2( ) 2 1     . Ling and McAleer (2003a) showed that the Quasi MLE (QMLE) 

for GARCH(p,q) is consistent if the second moment is finite. Ling and Li (1997) 

demonstrated that the local QMLE is asymptotically normal if the fourth moment is 

finite, that is, 4( )tE    , while Ling and McAleer (2003a) proved that the global 

QMLE is asymptotically normal if the sixth moment is finite, that is, 6( )tE    . Using 

results from Ling and Li (1997) and Ling and McAleer (2002a, 2002b) (see also 

Bollerslev (1986) and Nelson (1990)), the necessary and sufficient condition for the 

existence of the second moment of t  for GARCH(1,1) is 1    and, under 

normality, the necessary and sufficient condition for the existence of the fourth moment 

is 2 2( ) 2 1     . 

    For the univariate GARCH(p,q) model, Bougerol and Picard (1992) derived the 

necessary and sufficient condition, namely the log-moment condition or the negativity 

of a Lyapunov exponent, for strict stationarity and ergodicity (see also Nelson (1990)). 

Using the log-moment condition, Elie and Jeantheau (1995) and Jeantheau (1998) 

established it was sufficient for consistency of the QMLE of GARCH(p,q) (see Lee and 

Hansen (1994) for the proof in the case of GARCH(1,1)), and Boussama (2000) showed 

that it was sufficient for asymptotic normality. Based on these theoretical developments, 

a sufficient condition for the QMLE of GARCH(1,1) to be consistent and 

asymptotically normal is given by the log-moment condition, namely 

 

    2(log( )) 0.tE                                                 (3) 

 

However, this condition is not straightforward to check in practice, even for the 

GARCH(1,1) model, as it involves the expectation of a function of a random variable 
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and unknown parameters.  The extension of the log-moment condition to multivariate 

GARCH(p,q) models has not yet been shown to exist, although Jeantheau (1998) 

showed that the ultivariate log-moment condition could be verified under the additional 

assumption that the determinant of the unconditional variance of t  in (1) is finite. 

Jeantheau (1998) assumed a multivariate log-moment condition to prove consistency of 

the QMLE of the multivariate GARCH(p,q) model. An extension of Boussama’s (2000) 

log-moment condition to prove the asymptotic normality of the QMLE of the 

multivariate GARCH(p,q) process is not yet available. 

    The effects of positive shocks on the conditional variance, th , are assumed to be the 

same as the negative shocks in the symmetric GARCH model. In order to accommodate 

asymmetric behavior, Glosten et al. (1992) proposed the GJR model, for which GJR(1,1) 

is defined as follows: 

 

2
1 1 1( ( )) ,t t t th I h                                              (4) 

 

where 0  , 0  , 0   , 0   are sufficient conditions for 0th   and ( )tI  is 

an indicator variable defined by 
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as t  has the same sign as t . The indicator variable differentiates between positive 

and negative shocks, so that asymmetric effects in the data are captured by the 

coefficient  , with   0. The asymmetric effect,  , measures the contribution of 

shocks to both short run persistence, / 2  , and to long run persistence, 
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/ 2    . 

Ling and McAleer (2002b) derived the unique strictly stationary and ergodic 

solution of a family of GARCH processes, which includes GJR(1,1) as a special case, a 

simple sufficient condition for the existence of the solution, and the necessary and 

sufficient condition for the existence of the moments. For the special case of GJR(1,1), 

Ling and McAleer (2002b) showed that the regularity condition for the existence of the 

second moment under symmetry of t  is 

 

1
1,

2
                                                       (5) 

 

and the condition for the existence of the fourth moment under normality of t  is 

 

2 23
2 3 3 1,

2
                                           (6) 

 

while McAleer et al. (2007) showed that the weaker log-moment condition for GJR(1,1) 

was given by 

 

0])))((ln[( 2   ttIE ,                                      (7) 

 

which involves the expectation of a function of a random variable and unknown 

parameters. 

An alternative model to capture asymmetric behavior in the conditional variance is 

the Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely: 
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1 1 1log log ,t t t th h            1                           (8) 

 

where the parameters  ,   and  have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models. 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0th  ; (ii) Nelson (1991) showed that 1   

ensures stationarity and ergodicity for EGARCH(1,1); (iii) Shephard (1996) observed 

that 1   is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the conditional (or standardized) shocks appear in equation (4), 

1   would seem to be a sufficient condition for the existence of moments; and (v) in 

addition to being a sufficient condition for consistency, 1   is also likely to be 

sufficient for asymptotic normality of the QMLE of EGARCH(1,1). 

Furthermore, EGARCH captures asymmetries differently from GJR. The 

parameters  and   in EGARCH(1,1) represent the magnitude (or size) and sign 

effects of the conditional (or standardized) shocks, respectively, on the conditional 

variance, whereas   and    represent the effects of positive and negative shocks, 

respectively, on the conditional variance in GJR(1,1). 

 

IV. Empirical Results 

4.1 Minimum LM unit root test with one and two breaks 

The empirical results for the unit root tests are shown in Table 2, and they generally 

indicate that the ADF test does not reject the null hypothesis of a unit root. However, 
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MAP, Urea, and Rock reject the null hypothesis at the 1  significance level, which 

shows that there is no unit root for these prices, as shown in Table 3, when the minimum 

LM unit root test with two breaks by Lee and Strazicich (2003) is used. However, the 

price series for ammonia are tested using the minimum LM test unit root with one break 

as two breakpoints were not detected.   

 

4.2 ARMA(p,q) Processes 

In order to investigate global fertilizer price volatility, an appropriate time series 

model needs to be determined that satisfies the appropriate regularity conditions. The 

first task is to determine the processes for the mean equation. We choose the ARMA 

processes with the smallest Schwarz Bayesian Information Criterion (BIC) value for the 

seven series in each period. The p-values of the Ljung-Box Q statistics of the residuals 

from the fitted models indicate that there is no autocorrelation at the 5% significance 

level. Therefore, the specifications of the conditional mean and variance equations for 

the seven series are given in Table 4. 

 

4.3 Alternative Volatility Models for Crude Oil and Six Global Fertilizer Prices  

The appropriate volatility models for each of the six fertilizer prices and crude oil 

price are chosen on the basis of BIC and the regularity conditions for the moments to 

exist, and hence for consistency and asymptotic normality of the QMLE to hold. The 

QMLE will be consistent and asymptotically normal when the weak log-moment 

condition is satisfied.  

The empirical estimates for the alternative volatility models for the seven price 

series are given in Tables 5-11 for the three different time periods (that is, with. one or 

two structural breakpoints). Suitable models for crude oil price (given as Poil) are GJR 
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(1,1) for the first two periods, and GARCH(1,1) for the third period, as shown in Table 

5. Periods 1 and 2 have asymmetric effects (with 0 in the GJR(1,1) model). The 

short run persistence of shocks in periods 1, 2, and 3 are 0.079, 0.311 and 0.282, 

respectively, while the long run persistence of shocks in period 3 is 0.768, which is 

higher than in periods 1 and 2 of 0.314, and 0.519, respectively. These empirical 

outcomes indicate that a higher peak in the crude oil price is associated with greater 

volatility.  

For the MAP price series, a suitable model in the first period is GJR(1,1), while a 

suitable model in periods 2 and 3 is GARCH(1,1), as shown in Table 6. The estimated 

coefficients satisfy the sufficient conditions for the conditional variance to be positive 

( 0th  ). Time period 1 has an asymmetric effect (with 0 in the GJR(1,1) model). 

The short run persistence of shocks for MAP in periods 1, 2 and 3 are 0.239, 0.286 and 

0.356, respectively, while long run persistence is 0.374, 0.588 and 0.877, respectively, 

which indicates that MAP has the largest long run persistence of shocks in the third 

period. As compared with both the short and long run persistence of MAP and crude oil 

price, we find that both price series have same volatility effects in these three periods. In 

other words, both the level and volatility of MAP prices may be highly correlated with 

crude oil prices.  

Table 7 shows that the GARCH(1,1) model is the appropriate model for the three 

periods for the Urea series. The estimates show that the weak log-moment condition is 

satisfied, so that the QMLE in the three periods for Urea are consistent and 

asymptotically normal. The short run persistence of shocks for Urea in periods 1, 2 and 

3 are 0.080, 0.185 and 0.318, respectively, and the long run persistence of shocks in 

periods 1, 2 and 3 are 0.373, 0.595 and 0.960, respectively. The long run persistence of 

shocks in period 3 is more substantial than in the other two periods, which is similar to 
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the case of the crude oil and MAP prices.  

The appropriate model for the Ammonia series in the first and second periods is 

GJR(1,1), as shown in Table 8. Both of these two periods have asymmetric effects (with 

0 in the GJR(1,1) model). The short run persistence of shocks in periods 1 and 2 are 

0.269 and 0.522, respectively, while the long run persistence of shocks in periods 1 and 

2 are 0.494 and 0.908, respectively. The long run persistence of shocks in the second 

period is greater than its counterpart in period 1.   

Appropriate volatility models for Rock, Acid, and MOP prices for three different 

time periods are shown in Tables 9-11. For the Rock price series, the suitable models in 

the three time periods are GARCH(1,1), GARCH(1,1), and GJR(1,1), respectively, as 

shown in Table 9. For the Acid price series, as shown in Table 10, the best model in the 

first period is GJR(1,1), while GARCH(1,1) is best in the second and third periods. For 

the MOP price series, as shown in Table 11, the best model for all three time periods is 

GJR(1,1).  

The empirical results show that the long run persistence of shocks in periods 1, 2 and 

3 are 0.436, 0.605 and 0.817, respectively, for Rock prices, so that the Rock price in 

period 3 has the largest long run persistence of shocks. For Acid prices, the long run 

persistence of shocks in periods 1, 2 and 3 are 0.378, 0.627 and 0.733, respectively, so 

that the long run persistence in period 3 is the largest. With regard to MOP prices, the 

long run persistence of shocks in the three periods are 0.391, 0.589 and 0.916, 

respectively, so that the third period again has the largest long run persistence of shocks. 

Moreover, these three price series behave in a similar manner to crude oil prices. 

 

4. Concluding Remarks  

The main purpose of the paper was to evaluate empirically the volatility of global 
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fertilizer prices, and to link them to the volatility in crude oil prices. An empirically 

adequate model of volatility of the six global fertilizer prices was determined by 

checking the regularity conditions of the estimated models, and then detecting whether 

structural breaks existed in the six fertilizer price series. First, three time periods with 

two structural breakpoints were determined endogenously for six global fertilizer prices 

and the crude oil price using the Lee and Strazicich (2003) approach. Second, 

symmetric and asymmetric univariate conditional volatility models, including the 

widely used GARCH, GJR and EGARCH models, were estimated and selected on the 

basis of the BIC criterion and the regularity conditions for the QMLE to be consistent 

and asymptotically normal.  

   The contribution of shocks to the long run persistence of crude oil prices during the 

third period was found to be greater than during the first and second periods. This would 

suggest that the volatility in crude oil prices has recently increased in both strength and 

frequency. Therefore, the strength and frequency of global fertilizer prices has increased 

gradually over time. As the volatility in global fertilizer prices has increased, global 

agricultural production is likely to be affected significantly, which may lead to future 

instability in agricultural food prices. 
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Figure 1.  Price Trends for Global Fertilizers and Crude Oil, 2003-2008 
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Figure 2.  Higher Energy Use Fertilizer Prices and Crude Oil Price, 2003-2008 
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Table 1. Descriptive Statistics of Seven Price Series 

 

 

 

Statistics 

MAP 

(US$ 

/metric 

ton) 

Urea 

(US$ 

/metric 

ton) 

Ammonia

(US$ 

/metric 

ton) 

Acid 

(US$ 

/metric 

ton) 

Rock 

(US$ 

/metric 

ton) 

MOP 

(US$ 

/metric 

ton) 

Poil  

(Price of 

Oil. 

US$/Bale)

Sample 254 254 254 254 254 254 254 

Mean 258.07 225.80 280.72 428.30 78.46 206.18 48.29 

Medium 237 234.50 278.25 445.00 79.50 210.00 51.56 

Maximum 582.5 357.5 357.5 566.25 121.5 392.5 88.32 

Minimum 142.5 50.5 176 338.5 58 126 22.97 

Std. Dev. 89.39 55.51 53.89 70.01 18.97 57.95 17.23 
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Table 2. Augmented Dickey-Fuller (ADF) Unit Root Tests 

 

ADF tests 

Critical values 

 

 

Series 
With 

constant 

With constant and 

trend With trend 
With constant and 

trend 

Poil -1.326(1) -0.493(1) 

MAP -2.154(9) -2.248(9) 

Urea -2.439(3) -3.125(3) 

Ammonia -1.089(9) -2.301(9) 

Rock -2.372(0) -2.681(0) 

Acid -2.179(0) -1.926(0) 

MOP 3.280(0) 1.327(0) 

-3.457 (1 ) 

-2.873 (5 ) 

-2.573 (10 ) 

-3.995 (1 ) 

-3.428 (5 ) 

-3.137 (10 ) 

Note: BIC is used to select the optimal lag length. The values in parentheses denote the 

number of lags. 



  22

Table 3. LM Unit Root Tests with Two Breaks 

 

Series LMτ k TB1 TB2 

Poil -6.0177*** 8 20071129 20080327 

MAP -8.2394*** 8 20071108 20080327 

Urea -8.2641*** 8 20071220 20080424 

Ammonia -5.7755** 7  20080320 

Rock -7.9262*** 8 20070412 20080313 

Acid -15.9207*** 0 20071220 20080410 

MOP -9.5491*** 8 20071213 20080424 

Notes: The 1 , 5  and 10  critical values are -5.823, -5.286, and -4.989, respectively 

(see Lee and Strazicich, 2003). *, ** and *** denote significance at the 10 , 5  

and 1  levels, respectively. 
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Table 4. Optimal ARMA Processes for Seven Prices 

 

Period 
 

Period 1 Period 2 Period 3 

2003/01/09-2007/11/22 2007/11/29-2008/03/20 2008/03/27-2008/12/04 
Poil 

ARMA(3,2) ARMA(2,1) ARMA(3,3) 

2003/01/09-2007/11/01 2007/11/08-2008/03/20 2008/03/27-2008/12/04 
MAP 

ARMA(2,1) ARMA(1,1) ARMA(3,1) 

2003/01/09-2007/12/13 2007/12/20-2007/04/17 2008/04/24-2008/12/04 
Urea 

ARMA(3,2) ARMA(2,1) ARMA(2,1) 

2003/01/09-2008/03/13 2008/03/20-2008/12/04  
Ammonia 

ARMA(3,2) ARMA(2,1)  

2003/01/09-2007/04/05 2007/04/12-2008/03/06 2008/03/13-2008/12/04 
Rock 

ARMA(2,1) ARMA(1,1) ARMA(3,2) 

2003/01/09-2007/12/10 2007/12/17-2008/03/31 2008/04/07-2008/12/04 
Acid 

ARMA(3.2) ARMA(2,1) ARMA(3,2) 

2003/01/09-2007/12/06 2007/12/13-2008/04/17 2008/04/24-2008/12/04 
MOP 

ARMA(3,1) ARMA(2,1) ARMA(3,2) 
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Table 5. Volatility in Crude Oil Prices 

 

Period 2003/01/09-2007/11/22 2007/11/29-2008/03/20 2008/03/27-2008/12/04

ARMA(3,2) ARMA(2,1) ARMA(3,3) Series 

(Poil) GJR(1,1) GJR(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.519  

(0.062) 

0.393  

(0.016) 

0.617  

(0.030) 

AR(2) 
0.154 

(0.007) 

0.280  

(0.002) 

0.199  

(0.010) 

AR(3) 
-0.181  

(0.061) 
 

0.032  

(0.087) 

MA(1) 
0.473  

(0.064) 

-0.268  

(0.065) 

0.323  

(0.011) 

MA(2) 
-0.753  

(0.050) 
 

-0.293  

(0.013) 

MA(3)   
0.012  

(0.077) 

Variance Equation 

ω 
0.527  

(0.178) 

0.372  

(0.164) 

0.007 

(0.014) 

α 
0.133 

(0.034) 

0.238  

(0.085) 

0.282 

(0.031) 

β 
0.235  

(0.108) 

0.207  

(0.199) 

0.485  

(0.079) 

γ 
-0.108  

(0.075) 

0.147  

(0.096) 
 

Log 

moment 
-0.859 -0.761  -0.202 

Second 

moment 

0.421  

 
0.519  0.768 

Short run 

persistence 
0.079 0.311  0.282  

Long run 

persistence 
0.314  0.519  0.768  

BIC 2.491 3.814 4.601 

Note: Values in parentheses denote standard errors. 
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Table 6. Volatility in MAP Prices 

 

Period 2003/01/09-2007/11/01 2007/11/08-2008/03/20 2008/03/27-2008/12/04

ARMA(2,1) ARMA(1,1) ARMA(3,1) Series 

(MAP) GJR(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.665  

(0.008) 

0.817  

(0.043) 

0.633  

(0.010) 

AR(2) 
-0.279  

(0.089) 
 

0.158  

(0.013) 

AR(3)   
-0.150  

(0.070) 

MA(1) 
-0.138  

(0.081) 

-0.127  

(0.074) 

-0.457  

(0.083) 

Variance Equation 

ω 
0.409 

(0.226) 

0.221  

(0.246) 

0.006  

(0.087) 

α 
0.209  

(0.047) 

0.286  

(0.049) 

0.356  

(0.042) 

β 
0.135  

(0.104) 

0.302  

(0.169) 

0.521  

(0.179) 

γ 
0.061  

(0.095) 
  

Log 

moment 
-0.614 -0.015  -0.199 

Second 

moment 
0.374 0.588  0.877  

Short run 

persistence 
0.239  0.286 0.356 

Long run 

persistence 
0.374  0.588 0.877  

BIC 5.354 7.474 8.268 

Note: Values in parentheses denote standard errors. 
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Table 7. Volatility in Urea Prices 

 

Period 2003/01/09-2007/12/13 2007/12/20-2008/04/17 2008/04/24-2008/12/04

ARMA(3,2) ARMA(2,1) ARMA(2,1) Series 

(Urea) GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.763  

(0.009) 

0.314  

(0.042) 
0.897 (0.032) 

AR(2) 
-0.274  

(0.027) 

0.123  

(0.023) 

-0.461  

(0.013) 

AR(3) 
-0.026  

(0.011) 
  

MA(1) 
-0.057  

(0.048) 

-0.397  

(0.103) 

-0.432  

(0.029) 

MA(2) 
0.243  

(0.023) 
  

Variance Equation 

ω 
0.053  

(0.083) 

0.291  

(0.163) 

0.051  

(0.061) 

α 
0.080  

(0.036) 

0.185  

(0.023) 

0.318  

(0.005) 

β 
0.293  

(0.159) 

0.410  

(0.192) 

0.704  

(0.078) 

γ    

Log 

moment 
-0.085  -0.276 -0.356  

Second 

moment 
0.373 0.595 0.960  

Short run 

persistence 
0.080 0.185 0.318  

Long run 

persistence 
0.373 0.595 0.960  

BIC 5.222 6.845 6.896 

Note: Values in parentheses denote standard errors. 
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Table 8. Volatility in Ammonia Prices 

 

Period 2003/01/09-2008/03/13 2008/03/20-2008/12/04 

ARMA(3,2) ARMA(2,1) Series  

(Ammonia) GJR(1,1) GJR(1,1) 

Mean Equation 

AR(1) 
0.758  

(0.031) 

0.724  

(0.056) 

AR(2) 
0.449  

(0.008) 

-0.309  

(0.004) 

AR(3) 
-0.403  

(0.043) 
 

MA(1) 
-0.066  

(0.028) 

0.263  

(0.099) 

MA(2) 
-0.346  

(0.017) 
 

Variance Equation 

ω 
0.067  

(0.034) 

0.304  

(0.096) 

α 
0.220  

(0.056) 

0.241  

(0.136) 

β 
0.150  

(0.041) 

0.459  

(0.122) 

γ 
0.099  

(0.168) 

0.160  

(0.014) 

Log moment -0.601  -0.764  

Second moment 0.494  0.908  

Short run persistence 0.269  0.522  

Long run persistence 0.494  0.908  

BIC 5.368 7.439 

Note: Values in parentheses denote standard errors.  
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Table 9. Volatility in Rock Prices 

 

Period 2003/01/09-2007/04/05 2007/04/12-2008/03/06 2008/03/13-2008/12/04

ARMA(2,1) ARMA(1,1) ARMA(3,2) Series 

(Rock) GARCH(1,1) GARCH(1,1) GJR(1,1) 

Mean Equation 

AR(1) 
0.334  

(0.061) 

0.963 

(0.054) 

0.178 

(0.074) 

AR(2) 
0.248  

(0.009) 
 

0.223 

(0.009) 

AR(3)   
-0.203 

(0.056) 

MA(1) 
0.371  

(0.061) 

-0.223 

(0.027) 

0.472 

(0.017) 

MA(2)   
-0.153 

(0.061) 

Variance Equation 

ω 
0.005 

(0.004) 

0.121 

(0.164) 

0.086 

(0.040) 

α 
0.109 

(0.022) 

0.226 

(0.084) 

0.401 

(0.045) 

β 
0.327 

(0.196) 

0.339 

(0.105) 

0.324 

(0.038) 

γ   
0.183 

(0.051) 

Log 

moment 
-0.081  -0.184  -0.759  

Second 

moment 
0.436  0.605  0.817  

Short run 

persistence 
0.109  0.266  0.493  

Long run 

persistence 
0.436  0.605  0.817  

BIC 1.751 2.611 2.315 

Note: Values in parentheses denote standard errors.  
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Table 10. Volatility in Acid Prices 

 

Period 2003/01/09-2007/12/10 2007/12/17-2008/03/31 2008/04/07-2008/12/04

ARMA(3.2) ARMA(2,1) ARMA(3,2) Series 

(Acid) GJR(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.525 

(0.026) 

0.501  

(0.093) 

0.624 

(0.041) 

AR(2) 
0.244 

(0.010) 

0.294  

(0.067) 

0.453 

(0.010) 

AR(3) 
0.048 

(0.003) 
 

-0.238 

(0.077) 

MA(1) 
0.464 

(0.072) 

-0.207 

(0.089) 

0.610 

(0.033) 

MA(2) 
-0.261 

(0.015) 
 

-0.387 

(0.059) 

Variance Equation 

ω 
0.113 

(0.106) 

0.007  

(0.049) 

0.007 

(0.042) 

α 
0.179 

(0.005) 

0.151  

(0.082) 

0.032 

(0.003) 

β 
0.250 

(0.104) 

0.476  

(0.139) 

0.706 

(0.017) 

γ 
-0.102 

(0.058) 
  

Log 

moment 
-0.652  -0.087  -0.214 

Second 

moment 
0.378  0.627  0.733 

Short run 

persistence 
0.128  0.151  0.032 

Long run 

persistence 
0.378  0.627 0.733 

BIC 6.285 7.307 7.074 

Note: Values in parentheses denote standard errors.  
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Table 11. Volatility in MOP Prices 

 

Period 2003/01/09-2007/12/06 2007/12/13-2008/04/17 2008/04/24-2008/12/04

ARMA(3,1) ARMA(2,1) ARMA(3,2) Series 

(MOP) GJR(1,1) GJR(1,1) GJR(1,1) 

Mean Equation 

AR(1) 
0.875 

(0.085) 

0.704  

(0.051) 

0.856  

(0.030) 

AR(2) 
-0.335 

(0.021) 

-0.178  

(0.019) 

-0.187  

(0.005) 

AR(3) 
-0.343 

(0.084) 
 

0.095  

(0.038) 

MA(1) 
0.243 

(0.052) 

-0.178  

(0.062) 

0.148  

(0.051) 

MA(2)   
-0.139  

(0.029) 

Variance Equation 

ω 
0.184 

(0.139) 

0.122  

(0.074) 

0.029  

(0.034) 

α 
0.131 

(0.033) 

0.277  

(0.056) 

0.319  

(0.152) 

β 
0.218 

(0.106) 

0.233  

(0.102) 

0.507  

(0.097) 

γ 
0.084 

(0.029) 

0.158  

(0.072) 

0.182  

(0.104) 

Log 

moment 
-0.774  -0.744  -0.849  

Second 

moment 
0.391  0.589  0.916  

Short run 

persistence 
0.173  0.356  0.410  

Long run 

persistence 
0.391  0.589  0.916 

BIC 3.582 4.515 3.023 

Note: Values in parentheses denote standard errors.  

 


