503 research outputs found

    Reasoning about cooperation, actions and preferences

    Full text link

    Multi-k⃗\vec{k} Configurations

    Full text link
    Using resonant x-ray scattering to perform diffraction experiments at the U M4_{4} edge novel reflections of the generic form have been observed in UAs$_{0.8}$Se$_{0.2}$ where $\vec{k} = $, with $k = {1/2}$ reciprocal lattice units, is the wave vector of the primary (magnetic) order parameter. The reflections, with 10−410^{-4} of the magnetic intensities, cannot be explained on the basis of the primary order parameter within standard scattering theory. A full experimental characterisation of these reflections is presented including their energy, azimuthal and temperature dependencies. On this basis we establish that the reflections most likely arise from the electric dipole operator involving transitions between the core 3d and partially filled $5f$ states. The temperature dependence couples the peak to the triple-k⃗\vec{k} region of the phase diagram: Below ∼50\sim 50 K, where previous studies have suggested a transition to a double-k⃗\vec{k} state, the intensity of the is dramatically reduced. Whilst we are unable to give a definite explanation of how these novel reflections appear, this paper concludes with a discussion of possible ideas for these reflections in terms of the coherent superposition of the 3 primary (magnetic) order parameters

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    The glassy response of solid He-4 to torsional oscillations

    Full text link
    We calculated the glassy response of solid He-4 to torsional oscillations assuming a phenomenological glass model. Making only a few assumptions about the distribution of glassy relaxation times in a small subsystem of otherwise rigid solid He-4, we can account for the magnitude of the observed period shift and concomitant dissipation peak in several torsion oscillator experiments. The implications of the glass model for solid He-4 are threefold: (1) The dynamics of solid He-4 is governed by glassy relaxation processes. (2) The distribution of relaxation times varies significantly between different torsion oscillator experiments. (3) The mechanical response of a torsion oscillator does not require a supersolid component to account for the observed anomaly at low temperatures, though we cannot rule out its existence.Comment: 9 pages, 4 figures, presented at QFS200

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Social learning in LEADER: Exogenous, endogenous and hybrid evaluation in rural development

    Get PDF
    This paper considers the relationship between the centralised exogenous, institutions and the embedded, endogenous institutions of rural governance in Europe through an examination the evaluation procedures of the European LEADER programme. LEADER is presented in the literature as progressive in terms of innovation and stakeholder engagement. Yet while the planning and management of LEADER embraces heterogeneity and participation, programmatic evaluation is centralised and held at arms length from delivery organisations. The paper reviews previous efforts to improve evaluation in LEADER and considers alternative strategies for evaluation, contrasting LEADER practice with participatory evaluation methodologies in the wider international context. Can evaluation in itself be valuable as a mode of social learning and hence a driver for endogenous development in rural communities in Europe? The paper concludes by examining the challenges in producing a hybrid form of evaluation which accommodates endogenous and exogenous values

    Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata

    Get PDF
    In a terrestrial Triassic–Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations
    • …
    corecore