2 research outputs found

    LISA, binary stars, and the mass of the graviton

    Get PDF
    We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass, m_g, by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on m_g obtainable this way is ~ 50 times better than the current limit set by Solar System measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ~ 3-4 times better than the present Solar System bound. AM CVn-type binaries offer the prospect of improving the limit by a factor of 10, if such systems can be better understood by the time of the LISA mission. We briefly discuss the likelihood that radio and optical searches during the next decade will yield binaries that more closely approach the best possible case.Comment: ReVTeX 4, 6 pages, 1 figure, submitted to Phys Rev

    Report on the second Mock LISA data challenge

    Get PDF
    The Mock LISA data challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information about the source parameters. The challenges are being released in rounds of increasing complexity and realism: here we present the results of Challenge 2, issued in Jan 2007, which successfully demonstrated the recovery of signals from nonspinning supermassive-black-hole binaries with optimal SNRs between ~10 and 2000, from ~20 000 overlapping galactic white-dwarf binaries (among a realistically distributed population of 26 million), and from the extreme-mass-ratio inspirals of compact objects into central galactic black holes with optimal SNRs ~100
    corecore