9 research outputs found

    Tollip, an early regulator of the acute inflammatory response in the substantia nigra.

    Get PDF
    Tollip is a ubiquitously expressed protein, originally described as a modulator of the IL-1R/TLR-NF-κB signaling pathways. Although this property has been well characterized in peripheral cells, and despite some evidence of its expression in the central nervous system, the role of Tollip in neuroinflammation remains poorly understood. The present study sought to explore the implication of Tollip in inflammation in the substantia nigra pars compacta, the structure affected in Parkinson's disease. We first investigated Tollip distribution in the midbrain by immunohistochemistry. Then, we addressed TLR4-mediated response by intra-nigral injections of lipopolysaccharide (LPS), a TLR4 agonist, on inflammatory markers in Tollip knockout (KO) and wild-type (WT) mice. We report an unexpectedly high Tollip immunostaining in dopaminergic neurons of the mice brain. Second, intra-nigral injection of LPS led to increased susceptibility to neuroinflammation in Tollip KO compared to Tollip WT mice. This was demonstrated by a significant increase of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and interferon gamma (IFN-γ) messenger RNA (mRNA) in the midbrain of Tollip KO mice upon LPS injection. Consistently, brain rAAV viral vector transduction with a nuclear factor kappa B (NF-κB)-inducible reporter gene confirmed increased NF-κB activation in Tollip KO mice. Lastly, Tollip KO mice displayed higher inducible NO synthase (iNOS) production, both at the messenger and protein level when compared to LPS-injected WT mice. Tollip deletion also aggravated LPS-induced oxidative and nitrosative damages, as indicated by an increase of 8-oxo-2'-deoxyguanosine and nitrotyrosine immunostaining, respectively. Altogether, these findings highlight a critical role of Tollip in the early phase of TLR4-mediated neuroinflammation. As brain inflammation is known to contribute to Parkinson's disease, Tollip may be a potential target for neuroprotection

    Isothermal and Cyclic Aging of 310S Austenitic Stainless Steel

    Get PDF
    Unusual damage and high creep strain rates have been observed on components made of 310S stainless steel subjected to thermal cycles between room temperature and 1143 K (870 °C). Microstructural characterization of such components after service evidenced high contents in sigma phase which formed first from δ-ferrite and then from γ-austenite. To get some insight into this microstructural evolution, isothermal and cyclic aging of 310S stainless steel has been studied experimentally and discussed on the basis of numerical simulations. The higher contents of sigma phase observed after cyclic agings than after isothermal treatments are clearly associated with nucleation triggered by thermal cycling

    References

    No full text

    Mechanische Eigenschaften

    No full text

    Critical Evaluation and Thermodynamic Optimization of the CaO-P2O5 System

    No full text
    corecore