66 research outputs found

    Percolation model for structural phase transitions in Li1x_{1-x}Hx_xIO3_3 mixed crystals

    Full text link
    A percolation model is proposed to explain the structural phase transitions found in Li1x_{1-x}Hx_xIO3_3 mixed crystals as a function of the concentration parameter xx. The percolation thresholds are obtained from Monte Carlo simulations on the specific lattices occupied by lithium atoms and hydrogen bonds. The theoretical results strongly suggest that percolating lithium vacancies and hydrogen bonds are indeed responsible for the solid solution observed in the experimental range 0.22<x<0.360.22 < x < 0.36.Comment: 4 pages, 2 figure

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Shape abnormalities of the caudate nucleus correlate with poorer gait and balance : results from a subset of the ladis study

    Get PDF
    Objective Functional deficits seen in several neurodegenerative disorders have been linked with dysfunction in frontostriatal circuits and with associated shape alterations in striatal structures. The severity of visible white matter hyperintensities (WMHs) on magnetic resonance imaging has been found to correlate with poorer performance on measures of gait and balance. This study aimed to determine whether striatal volume and shape changes were correlated with gait dysfunction. Methods Magnetic resonance imaging scans and clinical gait/balance data (scores from the Short Physical Performance Battery [SPPB]) were sourced from 66 subjects in the previously published LADIS trial, performed in nondisabled individuals older than age 65 years with WMHs at study entry. Data were obtained at study entry and at 3-year follow-up. Caudate nuclei and putamina were manually traced using a previously published method and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis using the spherical harmonic shape description toolkit. Results There was no correlation between the severity of WMHs and striatal volumes. Caudate nuclei volume correlated with performance on the SPPB at baseline but not at follow-up, with subsequent shape analysis showing left caudate changes occurred in areas corresponding to inputs of the dorsolateral prefrontal, premotor, and motor cortex. There was no correlation between putamen volumes and performance on the SPPB. Conclusion Disruption in frontostriatal circuits may play a role in mediating poorer physical performance in individuals with WMHs. Striatal volume and shape changes may be suitable biomarkers for functional changes in this population

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Rubredoxin refolding on solid nanostructured hydrophobic surfaces: perspectives for developing biomimetic chaperones

    No full text
    Rubredoxins (Rds) are small (~54-residue) non-heme iron electron transfer proteins, with a tetrahedral Fe(SCys)4 site surrounded by a pair of iron-ligating CXXC loops1. Rds are ideal for folding studies as they: 1) are unable to incorporate metals when in their (folded) apoprotein form; 2) undergo quantitative refolding when metals are added to their chaotrope-unfolded apoprotein forms; 3) generate characteristic spectroscopic signals related to individual steps of the unfolding/refolding processes. Previous works described the metal-dependent refolding process of Rds and the influence of various denaturing agents on the process2,3. In this work we investigate the folding of Rd from Clostridium pastuerianum when adding iron to a folded, but iron-uptake incompetent apoprotein in the presence of polystyrene nanoparticles (NP) as \u201cdenaturing\u201d agents. Our rationale was that hydrophobic contacts with the NP's surface would expose protein regions (including ligand cysteines) making them capable of capturing added metals, thereby triggering refolding to the native protein structure and detachment from the NP. We found that rate and yield of refolding increase significantly in the presence of NP. Consistent with our hypothesis, t refolding rates and yields were influenced by the concentration of NP. Whereas the yield of refolded Rd increased as a function of the NP concentration, refolding rates decreased at high NP concentrations. This bio-mimetic chaperone system may be applicable to other proteins requiring a separate unfolding step prior to cofactor-triggered refolding, particularly when over-expressed in non-native hosts with limited cofactor accessibility
    corecore