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Abstract

Objective—Functional deficits seen in several neurodegenerative disorders have been linked 

with dysfunction in fronto-striatal circuits and with associated shape alterations in striatal 

structures. The severity of visible white matter changes (WMC) on MRI has been found to 
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correlate with poorer performance on measures of gait and balance. This study aimed to determine 

whether striatal volume and shape changes were correlated with gait dysfunction.

Method—MRI scans and clinical gait/balance data (scores from the SPPB - Short Physical 

Performance Battery) were sourced from 66 subjects in the previously-published LADIS trial, 

which was performed in >65 y.o. non-disabled individuals with WMC at study entry. Data were 

obtained at study entry and at three-year follow-up. Caudate nuclei and putamina were manually 

traced using a previously published method, and volumes calculated. The relationships between 

volume and physical performance on the SPPB were investigated with shape analysis utilising the 

SPHARM toolkit.

Results—There was no correlation between the severity of WMC and striatal volumes. Caudate 

nuclei volume correlated with performance on the SPPB at baseline, but not at follow-up, with 

subsequent shape analysis showing regionalisation of left caudate changes in areas corresponding 

to inputs of the dorsolateral prefrontal, premotor and motor cortex. There was no correlation 

between putamen volumes and performance on the SPPB.

Conclusion—Disruption in frontostriatal circuits may play a role in mediating poorer physical 

performance in individuals with white matter changes. Striatal volume and shape changes may be 

suitable biomarkers for functional changes in this population.

Introduction

The Implications of White Matter Changes

White matter changes (WMC), defined as focal and confluent white matter hyperintensities 

on T2-weighted MRI brain scans, are particularly prominent in individuals over the age of 

65 [1, 2]. Previous studies have examined the correlation of white matter changes and 

cognitive ability in this older age group, with the largest being the Leukoaraiosis and 

Disability Study (LADIS). The LADIS study is a multi-centre European study which 

investigated the effect of WMC on a number of different clinical indicators over a three-year 

prospective follow-up [3, 4]. The LADIS study has demonstrated a number of associations 

between severity of WMC and adverse outcomes, which included increased transition to 

disability [5], greater incidence of depression [6, 7], as well as declining cognitive ability 

[8-12].

The LADIS study also demonstrated a significant association between the severity of 

WMC/WMH and the prevalence of gait and balance disorders – both in the frequency of 

falls and in poorer scores obtained on scales such as the Short Physical Performance Battery 

(SPPB) [13, 14]. This is consistent with recent literature identifying gait and balance 

disorders in the elderly as a marker of other serious morbidity and mortality, particularly 

through proxy measures such as walking speed, which has been linked to all-cause and 

cardiovascular mortality [15, 16] as well as subsequent development of dementia [17].

Fronto-Striatal Circuits and Striatal Shape Analysis

The link between the basal ganglia of the brain and motor co-ordination and planning is well 

documented [18-20]. While basal ganglia volumes have been the mainstay of MRI studies, 

studies of three dimensional shape alterations in the striatal areas of the basal ganglia, 
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particularly in the caudate nucleus, have been demonstrated in a number of studies 

examining different neurodegenerative disorders characterised by both motor abnormalities 

and dementia [21-25]. Our group has previously examined caudate nucleus volumetrics in 

patients with stroke and vascular dementia [26].

Afferents to the caudate arise from different areas of the cortex, making the caudate nucleus 

an important part of parallel fronto-striatal circuits [27]. This model, first described by 

Alexander et al, and confirmed through a number of different modalities [28-31], indicates 

that different areas of the cortex ‘map’ on to different areas of the caudate nucleus and 

putamen (Figure 1). Specifically, the cognitive and behavioural circuits arising from 

dorsolateral prefrontal cortex, anterior cingulate and orbitofrontal cortex primarily project to 

the caudate, while the frontal eye fields and motor cortex project to both caudate and 

putamen [27, 32]. Accordingly, functional changes in cognition, behaviour and movement 

may arise from structural change in caudate and putamen. Therefore, we hypothesized that 

motor function may be correlated with the structural integrity and hence morphology of the 

caudate and putamen and sought to examine this hypothesis through three dimensional 

shape analyses of these structures.

This study aimed to determine whether subjects entering the LADIS study had striatal shape 

reductions - ‘deflation” - in specific areas at baseline, corresponding to the site of afferent 

connections from cortical motor circuits. Our chief hypothesis was that we would detect 

shape deflation in striatal regions corresponding to areas of the motor cortex, and that this 

deflation would correlate with poorer performance on the Short Physical Performance 

Battery. Gait, measured via walking speed in the SPPB, has been associated with cognitive 

impairment and progression to dementia [33-35]. We further hypothesised that striatal 

morphology would be associated with walking speed. Finally, as LADIS is a longitudinal 

study, we sought to investigate these structure-function relationships with clinical data at 3 

year follow-up.

Methods

LADIS Study Data Collection and Details

The recruitment methods and other clinical data for LADIS have been documented 

elsewhere [3] in brief: 639 subjects were recruited from 11 centres in Europe: Florence, 

Helsinki, Graz, Lisboa, Amsterdam, Gothenburg, Huddinge, Paris, Mannheim, Copenhagen, 

and Newcastle-upon-Tyne. Inclusion criteria were an age range between 65 and 84 years, 

white matter changes as rated by the Fazekas Scale (as mild, moderate and severe) on T2 

and FLAIR MRI [36] – during the course of the study. WMC were also assessed via total 

WMC volume and through the Scheltens scale [37] but the different measurement methods 

did not result in any differences in correlations with gait or balance outcomes [38]. The 

other criterion for entry was a score on the International Activities of Daily Living (IADL)

[39] scale indicating no or mild disability. The exclusion criteria were the presence of severe 

medical or psychiatric illness, severe unrelated neurological diseases (specifically, this 

included any comorbid diagnoses of neurodegenerative disorders affecting the caudate 

nucleus such as Huntington’s Disease), non-vascular leukoencephalopathy, or inability to 

give informed consent.
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MRI scans were performed at baseline and at three years. A number of clinical indicators 

were measured at baseline and at yearly intervals, including measurements of disability, 

cognition, mood, gait, and medical events such as stroke.

The gait and balance measure utilised for the current study was the Short Physical 

Performance Battery (SPPB), which tests the ability of subjects to hold themselves in 

various standing positions (feet in side-by-side, semi-tandem or tandem), measures walking 

speed over an 8-foot course, and tests ability and speed at rising from a chair [40]. The 

SPPB is scored out of 15, with a higher score indicating a better performance.

MRI Acquisition

The MRI-protocol consisted of 3D sagittal or coronal T1-weighted magnetization prepared 

rapid acquisition gradient echo (MPRAGE) images (TE=4–7 ms; TR=10–25 ms; TI=100–

950 ms; flip angle=10–30°; voxel size=1×1×1–1.5 mm3; FOV=250mm), axial T2-weighted 

fast spin echo images (TE=100–120 ms, TR=4000–6000 ms, FOV=250 mm, slice thickness: 

5-7.5 mm, interslice gap 0.5 mm) and fluid attenuated inversion recovery (FLAIR) images 

(TE=100–140 ms, TR=6000–10,000 ms, TI=2000–2400 ms, FOV=250mm, slice thickness 

5–7.5mm, interslice gap 0.5mm). The scans were acquired at 1.5 T [preceding description 

modified from [41]].

Ethical Approval

The LADIS study received ethical approval from local ethics committees in each centre. We 

received permission from the principal investigators for our analysis of a subset of the MRI 

scans and associated clinical data, as well as local approval from the Australian National 

University Human Research Ethics Committee.

Caudate Nucleus and Putamen Tracing

A subset comprising approximately 10% of the sample (n=66) from the LADIS study were 

selected by the LADIS study group (by GS) from four LADIS centres – Copenhagen, 

Stockholm (Huddinge), Gothenburg and Helsinki. These centres were chosen in 

collaboration with one of the authors (GS) and selected due to image quality for tracing and 

availability. Scans were anonymised by LADIS group researchers before transfer to a 

MacBook Pro (Apple, Cupertino, CA, USA) computer provided by University of Melbourne 

based at the Department of Psychological and Addiction Medicine, Australian National 

University. Subjects with infarcts in the caudate or putamen were excluded.

DICOM (Digital Imaging and Communications in Medicine) files of T1-weighted images 

were converted to ANALYZE 7.5 format (Mayo BIR, Rochester, NY, USA) using 

MRIConvert (http://lcni.uoregon.edu/~jolinda/MRIConvert/) to prepare for analysis. Image 

intensity was standardised by using preset threshold values, based on a pilot analysis of the 

data, and voxel size was reconstructed as isotropic at 1x1x1mm. The intracranial volume 

(ICV) was determined in a semi-automated fashion using FSL software (FMRIB Group, 

Oxford) as a measure to control for brain size. First, brains were skull-stripped with the 

Brain Extraction Tool (BET) and were then linearly aligned to the MNI152 1mm T1-

weighted template. The inverse of the determinant of the affine transformation matrix was 
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multiplied by the ICV of the MNI152 template to produce a measure of ICV for use as a 

covariate [42].

Caudate nuclei and putamen were manually traced within ANALYZE 10.0b (Mayo BIR, 

Rochester, NY, USA) through a Region of Interest (ROI) approach on, by one investigator 

(MM) who was blind to clinical data, using a previously published protocol [43, 44] applied 

in a number of studies [26, 45-48]. Briefly, this involved tracing images in the axial plane, 

using the inferior border of the anterior commissure as the inferior boundary (see Figure 2). 

The resulting binary objects were checked in the sagittal plane, and volumes calculated. 

Reliability of the tracing was checked by an experienced tracer (JCLL) tracing basal ganglia 

on a representative sample of the 66 subjects; MM also retraced the representative sample to 

serve as test-retest reliability. Intraclass correlation coefficients were used to determine 

reliability of volumetric measurement – intra-rater reliability was 0.944, with inter-rater 

reliability 0.890. Decisions on whether to proceed to shape analysis were guided by 

volumetric results: if there was no significant volume change, shape analysis was not 

attempted. While it is possible to have shape change without volumetric change, and vice 

versa, our group’s experience is that shape analysis allows localisation of where significant 

volumetric differences occur. Furthermore, given that volumetric change is very rarely 

uniform, it follows that overall volume change is driven by a significant localised shape 

change.

Shape Analysis

Shape analysis was undertaken in a semi-automated fashion using the University of North 

Carolina shape analysis toolkit (http://www.nitrc.org/projects/spharm-pdm/); a detailed 

description of the methodology is available elsewhere [49, 50]. Segmented 3D binaries are 

initially processed to ensure interior holes are filled, followed by morphological closing and 

minimal smoothing. These are then subjected to spherical harmonic shape description 

(SPHARM), whereby boundary surfaces of each shape are mapped onto the surface of a 

sphere and the surface coordinates were represented through their spherical harmonic 

coefficients [51]. The correspondence between surfaces is established by parameter-based 

rotation, itself based on first-order expansion of the spherical harmonics. The surfaces are 

uniformly sampled into a set of 1002 surface points and aligned to a study-averaged 

template for each structure (left and right caudate and putamen) using rigid-body Procrustes 

alignment [52]. Scaling normalization was performed to remove the effect of head size/

intracranial volume, using a surface scaling factor: fi, where fi={Mean(ICV)/ICVi}1/3 [53].

Statistical Analyses

Volumetric data were analysed with paired t-tests to determine change in volume from 

baseline to 3-year follow-up. ANCOVA was performed to determine whether volume 

differences were present between severity subgroups as measured by baseline Fazekas score. 

Relationships between basal ganglia volumes and SPPB scores/walking speeds were 

assessed with hierarchical regression, with covariates (age, gender and intracranial volume) 

entered at the first step and the volumes entered at the second step.
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With regard to shape analysis, we compute non-parametric statistical tests that compare the 

local surface coordinates for group mean differences at the 1002 surface locations [49, 50, 

53]. A local group difference metric between groups of surface coordinates is derived from 

the Hotelling T2 two-sample metric [53]. As the shape analysis involves computing 1002 

hypothesis tests, one per surface location, a correction for multiple testing is necessary, as an 

uncorrected analysis would be overly optimistic. The shape analysis uses permutation tests 

over the Hotelling T2 metric for the computation of the raw uncorrected p-values and uses 

false discovery rate (FDR) [54] for multiple comparison correction. Correlational analyses 

were undertaken using Spearman’s rank-correlation co-efficient r, and maps of both r and 

FDR-corrected p-values are generated.

Results

Demographics, Longitudinal Change and Severity of White Matter Disease

Demographic details of the entire LADIS dataset have been reported [3]. The demographic 

details and severity of WMC in the LADIS subgroup included in this study were similar to 

that of the larger dataset. The rates of subsequent transition to disability or death were 

significantly lower in the study group compared to the rest of the LADIS group, while SPPB 

scores were not significantly different (Table 1). There was no significant relationship 

between basal ganglia volumes and the severity of WMC, whether the severity was assessed 

via the Fazekas scale, total summed WMC volume or Schelten scores (please see online 

supplementary materials). Longitudinal paired t-tests on baseline and follow-up basal 

ganglia volumes showed little change in volume over time, apart from some weakly 

significant increases in caudate volumes in some subsets (<5% of volume, see online 

supplementary material). I think you mean decreases in caudate volume Table 3 in the 

appendix reports shirnkage of the right caudate in the mild group and shrinkage of left 

caudate in the moderate group. This table is a bit confusing as a positive mean difference 

signifies shirnkage. It might bet better to reverese the sign ie make Mean difference = follow 

up volume minus baseline volume. Or have I got myself mixed up!!!

Volumetry

Initially, volumetric analysis was performed on the manually segmented 3-D objects of 

caudate and putamen. The results of these analyses guided the shape analysis explorations, 

based upon our group’s previous experience with shape analysis [24, 46-48]. Regression 

analysis on these volumes is shown in Table 2. A significant correlation was found between 

caudate nucleus volumes and both SPPB scores and the walking speed subcomponent of the 

SPPB at study baseline, but this was not reproduced at three-year follow-up. Intracranial 

volume was negatively correlated with SPPB at baseline, but not follow-up. There was no 

significant correlation between putamen volume and measures of gait or balance.

Shape Analysis

We applied the shape analysis method to the segmented caudate for the entire dataset. All 

results were scale-normalised for total intracranial volume. The results presented are based 

upon FDR corrected p-value maps, together with corresponding local displacement maps. 
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The details of the legend for the analyses are described below the images for ease of 

reference when reading the images (Figure 4).

Shape deflation was seen unilaterally in the left caudate nucleus, with no significant 

differences seen in the right caudate. Inward deformation of left caudate shape was found in 

regions corresponding to the inputs of the dorsolateral prefrontal, premotor and motor 

cortex, correlating with SPPB (p=0.0017) [32, 55, 56]. Localised shape changes were seen 

when analysing the walking speed subcomponent of the SPPB, but these did not persist 

when corrected for FDR.

Discussion

The current study, of older patients with white matter changes, has identified highly 

significant shape and volume deflation in areas of the left caudate nucleus that subserve 

motor portions of the fronto-striatal circuits. These results support our hypothesis, and 

demonstrate patterns similar to those seen in a number of neurodegenerative disorders that 

manifest structural change in the caudate nucleus such as Huntington’s Disease [57-59], 

Alzheimer’s Disease [60-63], Progressive Supranuclear Palsy [25, 64], Corticobasal 

Syndrome and Multiple System Atrophy [65-67]. Accordingly, morphometric (shape and 

volume) analysis of the caudate may be used as a biomarker which could aid in diagnostic 

clarity and as an additional marker to track the progression and treatment [68].

Within frontostriatal circuits, the caudate subserves a role in the supplementary motor 

circuit, connecting to premotor and motor cortex involved in the planning and execution of 

movements [32]. Impairment of gait and balance was correlated with altered morphology of 

the caudate. This finding suggests that motor dysfunction is associated with disruption of the 

supplementary motor frontostriatal circuit. This is borne out by the specific regional atrophy 

in the postero-lateral aspect of the left caudate. It has been proposed that a purpose of 

hemispheric lateralisation is to encode constrained repertoires of cognition, emotion and 

behaviour within the left hemisphere [69]. Thus, the specific atrophy of the left caudate may, 

in part, reflect the process of loss of the physical substrate of the entrained gait and balance 

behaviours under frontal control in frontostriatal circuits. A parsimonious explanation for 

lateralization may be that the corresponding morphologic change was not detected in the 

right caudate due to sample size.

The lack of correlation between white matter lesion load and striatal volumes, and between 

caudate morphology and SPPB at follow-up may be partially explained by a survivor effect, 

i.e. the selection of a group for which MRI were available in 3-year follow-up necessarily 

resulted in a sample biased to lesser severity of disability in general (as seen in Table 1). 

Thus a correlation evident at baseline may have much less predictive value and hence 

correlation at follow-up. This survivor effect may also, in part, be responsible for the lack of 

atrophy demonstrated in basal ganglia volumes over this period (see online supplementary 

material) – indeed, there was a statistically significant (although small, <5%) increase in 

caudate volumes of some subsets, which may reflect some compensation as the patient ages 

but is more likely to be a statistical artefact. The small but highly significant negative 

correlation between intracranial volume and SPPB at baseline implies higher ICV is 
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correlated with lower SPPB, signifying poorer motor function. That this is not replicated in 

the 3-year follow-up may also represent a survivor effect, but is admittedly difficult to 

explain.

The possible mechanisms of caudate morphology alterations in WMC are admittedly 

speculative. These mechanisms comprise: possible deafferentation of striatal inputs through 

direct anatomical disruption by white matter hyperintensities [68], direct vascular damage to 

the caudate and generalised cerebral atrophy as a result of WMC. We consider the former 

most likely, and at least in our study, the latter two factors were controlled for by exclusion 

and as a covariate/scaling respectively.

Limitations of this study include the small sample size. However, as manual tracing is a 

time-intensive process, the size of this study compares favourably to other shape analysis 

studies utilising similar methodology [46-48]. Replication of these results, particularly the 

preponderance of left-sided deflation, will be useful in order to confirm the degree and 

laterality of shape deflation in individuals with diffuse white-matter hyperintensities. 

Analysing the rest of the LADIS dataset would be a useful next step, but the large number of 

scans (600+) involved may require a more automated and less manually intensive 

segmentation method.

Conclusion

We have demonstrated that the caudate nucleus may be a possible physical substrate and 

hence, a potential biomarker, for gait and balance in persons with WMC. Recent related 

research has highlighted that impaired gait, measured as walking speed, is associated with 

both progression to dementia and increased mortality [33-35]. Thus having identified a 

possible physical substrate and component of frontostriatal circuits implicated in cortical 

control of gait and balance is a significant advance. In addition, we have demonstrated a 

correlation between caudate morphology, responsible for mediation of motor function, and a 

measure of gait, balance and walking speed. We propose that these methods of shape 

analysis of the striatum should be applied, with the advance of automated segmentation, to 

the entire LADIS dataset, and similar datasets to determine if our findings may be 

replicated, and extended by correlation with automated quantification of white matter 

hyperintensities. Thus we may derive a reliable neuroimaging biomarker of cognitive and 

gait dysfunction in cerebrovascular disease, suitable for monitoring disease progression and 

potentially predictive of dementia and adverse outcomes.
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Figure 1. 
Striatal afferent connections, showing the location on the caudate and putamen that each 

cortical region preferentially connects, based on the circuit diagrams from Alexander et al 

1986.
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Figure 2. 
Diagram demonstrating the functional organisation of A. frontal cortex and B. striatal 

afferent projections. (A) Schematic illustration of functional connections linking frontal 

cortical brain regions. (B) Organisation of cortical and subcortical inputs to the striatum. In 

both (A) and (B), the colours denote functional distinctions. Blue: motor cortex, execution 

of motor actions; green: premotor cortex, planning of movements; yellow: dorsal and lateral 

prefrontal cortex, cognitive and executive functions; orange: orbital prefrontal cortex, goal-

directed behaviours and motivation; re: medial prefrontal cortex, goal-directed behaviours 

and emotional processing. Reproduced with permission from Haber, 2003.
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Figure 3. 
Representative slices from manual tracing of the caudate nuclei, above, and the putamina, 

below.
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Figure 4. 
Shape analysis correlating specific areas of the caudate nucleus with performance on the 

Short Physical Performance Battery (SPPB) at study entry. Clockwise from L top (three 

images per structure) : 1a,b,c: Left caudate ventral aspect, 2a,b,c: R caudate ventral aspect, 

3a,b,c: R dorsal aspect, 4a,b,c: L caudate dorsal aspect. The anterior aspect of the caudate is 

oriented towards the bottom of the image. Raw P value: unadjusted P value; FDR P value: 

false discovery rate P value (adjustment for family-wise error); Spearmans r: Spearman’s 

rank correlation coefficient for SPPB with caudate surface. Scale for images is displayed in 

the colour bar at the side of the respective images.
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Table 1

Demographic Details

Variable Study group
n=66

Rest of LADIS
study (n=573)

Significance of
Difference on t-
test/chi-square

Age in years – mean (SD) 73.2 (4.97) 74.2 (5.05) 0.115 (NS)

Gender – % male 51.5 44.3 0.262 (NS)

Mean Caudate Volumes (mm3)* 2695.4 N/A N/A

Mean Putamen Volumes (mm3)* 2195.5 N/A N/A

Mean Intracranial Volume (cm3) 1567.9 N/A N/A

Leukoaraiosis – % mild 39.7 45 0.705 (NS)

Leukoaraiosis – % mod 33.8 30.5 0.705 (NS)

Leukoaraiosis – % severe 26.5 24.5 0.705 (NS)

% who transitioned to disability or
death at 3 years

25.8 39.6 0.035*

Average SPPB scores at Baseline 9.80 9.74 0.846 (NS)

Average SPPB scores at 3-Year
Follow-Up

9.69 9.11 0.119 (NS)

Average Walking Speed at Baseline
(m/sec)

1.15 1.19 0.127 (NS)

Average Walking Speed at 3-Year
Follow-up (m/sec)

1.17 1.11 0.508 (NS)

*
Right plus left volumes
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Table 2

Caudate Nucleus Volumetry Regression Analyses (Model 2)

Variable Time Point Variable Standardized
Beta

Sig. Correlations

Partial Part

SPPB
Score

Baseline/Study
Entry

Age −.243 .040* −.278 −.232

Gender −.159 .261 −.154 −.125

Intracranial
Volume

−.370 .009* −.350 −.300

Bilateral Caudate
Volume

.350 .003* .390 .340

3-Year Follow-
up

Age −.314 .027* −.307 −.302

Gender −.059 .721 −.051 −.048

Intracranial
Volume

.095 .555 .084 .079

Bilateral Caudate
Volume

.191 .167 .194 .186

Walking
Speed

Baseline/Study
Entry

Age −.427 .001* −.449 −.412

Gender −.185 .194 −.176 −.147

Intracranial
Volume

−.274 .047* −.266 −.227

Bilateral Caudate
Volume

.340 .005* .373 .330

3-Year Follow-
up

Age −.383 .005* −.385 −.368

Gender −.130 .412 −.117 −.104

Intracranial
Volume

−.266 .086 −.243 −.221

Bilateral Caudate
Volume

.220 .096 .236 .214

Model 1 = Age, Gender, Intracranial volume Model 2 = Age, Gender, Intracranial volume, Bilateral caudate volume
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Table 3

Putamen Volumetry Regression Analyses (Model 2)

Variable Time Point Variable Standardized
Beta

Sig. Correlations

Partial Part

SPPB
Score

Baseline/Study
Entry

Age −.259 .046* −.268 −.248

Gender −.288 .059 −.254 −.233

Intracranial
Volume

−.441 .005 −.371 −.355

Bilateral Putamen
Volume

−.084 .519 −.088 −.079

3-Year Follow-
up

Age −.290 .045* −.257 −.279

Gender −.097 .569 −.068 −.081

Intracranial
Volume

.077 .642 .099 .066

Bilateral Putamen
Volume

.001 .993 .077 .001

Walking
Speed

Baseline/Study
Entry

Age −.400 .002* −.371 −.397

Gender −.271 .074 .007 −.241

Intracranial
Volume

−.328 .032 −.216 −.286

Bilateral Putamen
Volume

.022 .863 .008 .024

3-Year Follow-
up

Age −.355 .012* −.344 −.350

Gender −.173 .295 .073 −.149

Intracranial
Volume

−.288 .077 −.229 −.250

Bilateral Putamen
Volume

.008 .954 −.011 .008

Model 1 = Age, Gender, Intracranial volume Model 2 = Age, Gender, Intracranial volume, Bilateral putamen volume
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