1,093 research outputs found

    Reforming EU Pesticides Regulation, Rebuilding Public Support: Evidence from Survey Experiments in Six Member States:an ACES policy report

    Get PDF
    The authorization and use of pesticides in the European Union (EU) have become increasingly controversial and politically salient over the past decade. In particular the European Commission’s decision to re-authorize the use of glyphosate, the active substance in Bayer/Monsanto’s Roundup, after it had been classified a ‘probable human carcinogen’ by the International Agency for Research on Cancer (IARC), was highly controversial and triggered a lively debate on how to reform EU pesticide regulation. In this policy report, we assess whether and how specific reforms to decision-making procedures could impact public support for EU pesticides regulation, including acceptance of authorization decisions on controversial substances such as glyphosate. To do so, we first identified the main challenges of European pesticides regulation exposed by recent developments, including (but not limited to) the glyphosate controversy, as well as the actual and potential reforms proposed by the EU institutions, civil society organizations, academic commentators, and other stakeholders. We grouped these challenges and related reform proposals into four dimensions, namely: 1) the organization of the decision-making process; 2) the factors considered when authorizing pesticides; 3) sources of evidence and potential conflicts of interest; and 4) post-market monitoring and review of authorized pesticides. We then conducted a pair of linked online survey experiments on public attitudes toward reform of EU pesticides regulation in June 2020 among a representative sample of the adult population in six Member States (France, Germany, Italy, the Netherlands, Poland, and Sweden, n=9022). Our results show that the introduction of systematic post-authorization monitoring and review, and consideration of all relevant scientific studies in the authorization decision are the two most promising reforms to increase public support for pesticides regulation. Moreover, if a hypothetical glyphosate authorization decision is taken under a decision-making procedure that citizens (strongly) support, they are more likely to accept it even if they previously opposed this outcome. Our findings are particularly relevant given that glyphosate is currently again undergoing a renewal procedure in the EU

    Economic and Market Analysis of CO2 Utilization Technologies – Focus on CO2 derived from North Dakota lignite

    Get PDF
    AbstractBased on information obtained about the technical aspects of the technologies, several challenges are expected to be faced by any potential CO2 utilization technologies intended for North Dakota lignite plants. The weather, alkaline content of lignite fly ash, and space limitations in the immediate vicinity of existing power plants are challenging hurdles to overcome. Currently, no CO2 utilization option is ready for implementation or integration with North Dakota power plants. Mineralization technologies suffer from the lack of a well-defined product and insufficient alkalinity in lignite fly ash. Algae and microalgae technologies are not economically feasible and will have weather- related challenges

    Supervised Domain Adaptation using Graph Embedding

    Get PDF
    Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of dimensionality reduction and propose a generic framework based on graph embedding. Instead of solving the generalised eigenvalue problem, we formulate the graph-preserving criterion as a loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework; a simple LDA-inspired instantiation of the framework leads to state-of-the-art performance on two of the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.Comment: 7 pages, 3 figures, 3 table

    Opportunities for coupled electrochemical and ion-exchange technologies to remove recalcitrant micropollutants in water

    Get PDF
    Micropollutants are found in many waters at concentrations that are concerning for living and environmental systems. They are usually characterised as being persistent and are generally difficult to remove from the water using traditional techniques. In this work, we investigate a treatment technology that couples electrooxidation of micropollutants with subsequent absorption of charged products and remaining compounds through a mixed strong acid and strong base ion exchange resin. The results clearly show that carbon fibre is a promising electrode material. Electrooxidation of the drug Ibuprofen using carbon fibre in a coulombic efficiency of 13 mC/ppm removed 71% of the compound after two hours (down to 29 ppm). The addition of sodium chloride led to a near doubling of the pseudo-first order reaction rate from 1.7 to 3.0 10-4 s-1. A mix of Ibuprofen and the pesticide Diuron showed similarly promising results and while the overall oxidation decreased the positive effect of sodium chloride was present. Strikingly, coupling electrooxidation with a mixed bed ion exchange resin removed both compounds, decreasing levels of Diuron to below the limit of detection (18 ppb) and Ibuprofen down to 0.8 ppm. The approach shows potential as a treatment technology for the removal of complex pollutants in water

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801−-2304 of approximately 160 \rad at an elongation of 0.95∘^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393ÎŒG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Fluorescent carbon dioxide indicators

    Get PDF
    Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future

    Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: A randomized, double-blind, sham-controlled ACT2 study

    Get PDF
    Background Clinical observations and results from recent studies support the use of non-invasive vagus nerve stimulation (nVNS) for treating cluster headache (CH) attacks. This study compared nVNS with a sham device for acute treatment in patients with episodic or chronic CH (eCH, cCH). Methods After completing a 1-week run-in period, subjects were randomly assigned (1:1) to receive nVNS or sham therapy during a 2-week double-blind period. The primary efficacy endpoint was the proportion of all treated attacks that achieved pain-free status within 15 minutes after treatment initiation, without rescue treatment. Results The Full Analysis Set comprised 48 nVNS-treated (14 eCH, 34 cCH) and 44 sham-treated (13 eCH, 31 cCH) subjects. For the primary endpoint, nVNS (14%) and sham (12%) treatments were not significantly different for the total cohort. In the eCH subgroup, nVNS (48%) was superior to sham (6%;p<0.01). No significant differences between nVNS (5%) and sham (13%) were seen in the cCH subgroup. Conclusions Combing both eCH and cCH patients, nVNS was no different to sham. For the treatment of CH attacks, nVNS was superior to sham therapy in eCH but not in cCH. These results confirm and extend previous findings regarding the efficacy, safety, and tolerability of nVNS for the acute treatment of eCH
    • 

    corecore