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Abstract: A multi-key data organization is developed for handling a continuous stream
of large scale, time -dependent, 3D weather data in a global environment. The
structure supports inserting the data in real -time as they arrive or retrieving
weather events at desired times and locations from archived weather histories.
In either case data are organized for interactive visualization and visual query.
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1. INTRODUCTION

There are a burgeoning number of sources for weather data. These
different sources often provide data with different formats, resolutions, and
levels of confidence. Yet once these data are prepared for visualization they
can be integ rated, displayed together, compared and contrasted, and
analyzed together. A main reason is that visualization ultimately requires
mapping the data into a common space and structure. In this paper we will
exploit this property by developing a data model th at supports efficient and
interactive visualization of integrated global data.
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Our ultimate goal is to create a world geospatial digital library containing
comprehensive geospatial data for any place on earth. The main method of
accessing these data is via interactive visualization; thus we advocate a
Visual Earth [Rib02] superceding the usual goal of a Digital Earth [Dig01].
The Visual Earth will definitely be a dynamic place. This is especially true
for weather data, but also eventually for terrain, buildings, and other types of
data. Since all these data are or will be time -dependent, the data model must
be dynamic. Further to support visual queries and interactive visualization,
the data model must produce multiresolution graphical representations
appropriate for interactive rendering.

In this work we concentrate on 3D data, because these data have not been
organized for exploration, query, and investigation as much as other data
(e.g., satellite imagery). Indeed, even the National Weather Service is only
now about to receive tools permitting interactive visual exploration of the
full 3D structure of NEXRAD Doppler radar. Up to now forecasters have
only viewed these data as 2D slices. In addition the 3D weather data often
exhibit significant spatial non -uniformity, such as when there are
overlapping Doppler radar sites or when data from different sources are
combined. We have developed a novel rendering method for 3D time -
dependent data that provides newly accurate depiction of the non  -uniform
3D structure of the data and scales to regional and ultimately global
coverage. Thus the structure must handle multiple overlapping radars,
collections of radars that cover a state (Oklahoma has 11 NEXRAD radar
sites), and even national or international collections (th e U.S. has about 140
NEXRAD sites). We will discuss these new rendering methods and the
scalable structure, and how they fit into the Visual Earth, in this paper

2. 4D DATA MODEL FOR THe VISUAL EARTH

Since we have 3D, time -dependent data, the data model must be able to
handle histories. This requires a 4D model where time is a dimension on
equal footing with the spatial dimensions. However, although placed on an
equal footing in terms of efficiency of access and display, time requires
different handling than t he spatial dimensions since histories can stretch for
years. We thus introduce a multi -key data organization that can handle a
continuous stream of large -scale, time -dependent, 3D weather data. The
structure supports inserting the data in real -time as they arrive or retrieving
weather events at desired times and locations from archived weather
histories that will ultimately contain years of data. The former case is
important for timely responses to weather events, like those weather
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forecasters must make, w hile the latter is important for analysis or general
understanding of weather phenomena. For either case the data are organized
for interactive visualization. Since it is for the Visual Earth, the interactive
visualization environment supports simultaneous display of the weather data
with high resolution terrain elevation and imagery data, clusters of 3D
buildings, features such as roads or waterways, and a GIS data retrieved
from a GIS database [Lin96, Fau00, Dav98, Dav99].

2.1 Relevant Work

Developing a fully realized tool of this nature requires capability in
visualization, interactive 3D graphics, temporal and spatial databases, GIS
and artificial intelligence. Below we describe some of the relevant work in
these areas and then explore how the needs of inter active visualization
queries compare and contrast with the goals of this work. While there are
commercial and research groups working towards large scale, interactive,
queryable, 3D visualization of geospatial data, much of the work appears in
separate are as of expertise. A comprehensive solution does not exist,
especially one that includes both terrain atmospheric data.

In the commercial GIS realm, Rigaux [Rig02] points out the many
current GIS systems such as Arcinfo (ESRI), MGE and TiGRis (Intergraph)
separate descriptive (or alphanumeric) data and spatial data management.
Typically, a relational database management system (DBMS) is used for
descriptive data while custom modules are built for handling spatial and
temporal data. Rigaux discusses two such systems, Oracle8i and Postgress.

In the 3D graphics and visualization literature, a number of data
structures and algorithms have been developed for visualizing time -varying
volumetric data. Sutton et al. [Sut99] present the temporal branch -on-need
tree (T -BON) that focuses on rendering isosurfaces from time varying
volumetric data. Shen et al. [She99] present the time -space partitioning
(TSP) tree for visualizing time varying volumetric data. These approaches
support visual query on the level of consecutive , coherent time steps, as
described further in Sec. 3, rather than temporal database queries of the sort
made in a DBMS.

This line of research appears to have proceeded independently of the
work on spatio  -temporal databases within the database community.
Examples of this latter work are in the proceedings of the Internal Workshop
STDBM’'99 (Spatio-Temporal Database Management); Advanced Database
Systems by Zaniolo et al. [Zan97]; and Temporal Databases: Research and
Practice [Etz98]. In this last volume, Jen sen et al. [Jen98] provide a
“Consensus Glossary” of the concepts and terminology developed in the
temporal database area over the past several decades. Much of these ideas
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have been integrated into TSQL2, a standard temporal extension for the
ubiquitous SQL. Similar overviews are found in texts such as Part Il of
Advanced Database Systems [Zan97].

While much of this literature does not produce real -time 3D
visualizations, there are a few exceptions. Lutterman and Grauer [Lut99] add
temporal components to the VRML scene graph. They illustrate interactive
3D VRML visualizations of ground water heads (a geological formation)
and the evolution of a city. The user can move through either environment
using standard VRML intersections plus each application has an interface for
moving the state of the virtual world forward and backward in time. The
temporal node types added to VRML were considered for integration into
the VRML standard. However, the complexity and scale of the data is much
less than the weather plus terrain data that we deal with here.

Mennis et al. [Men00, Men02] bring in methods from artificial
intelligence and human cognition to help organize spatio -temporal data.
They describe the Pyramid Framework that “seeks to integrate principles of
cognition into geographic database representation” [Men02]. The framework
is composed of the Data Component and the Knowledge Component. The
Data Component refers to traditional spatio -temporal GIS data consisting of
location, time and theme (a GIS term describing  the type of information
being represented). The Knowledge Component contains information about
higher-level semantic ‘objects.’ This component contains a taxonomy
structure that group similar objects within a category along with a rule -base
used to identi fy these objects from the lower -level Data Component. The
Knowledge Component also has a partonomy structure that represents part -
whole relationships between the high level objects. They implement this
structure using a commercial OO database called Poet. They give an
example where the Data Component consists of precipitation and
temperature data, which is analyzed to produce a variety of weather storm
objects which are the Knowledge Components. All this information is built
within the Poet OODBMS and is qu eryable with the Object Query
Language. No visualization component is directly provided for in this
system. The Pyramid Framework appears to be quite general, and the
Knowledge Component advances the notion of the ‘weather events’
described further below.

Our weather visualization tool needs to support both volumetric data
representing the Doppler radar or other 3D weather information as well as
discrete geometric object data that represents extracted data such as
mesocyclones. The volumetric data case need s ideas similar to TSP trees
[She99]. However, as pointed out by Plale [Pla01], the TSP structure is
designed with the assumption that the TSP is constructed once as a
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preprocessing step and then reused repeatedly for the interactive
visualization without further modification. This does not suit our goals of
having a database that is continually updated with new data.

The discrete geometric object data will require different techniques. The
spatio-temporal database literature contains a fair amount of discu ssion on
temporal spatial indexing of discrete objects. Nascimento et al. for instance
compares a number of spatial database indices for spatio -temporal access of
discretely moving points [Nas99]. They compare R -tree, the 3D R -tree, the
2+3 R-tree and the HR-tree. (These methods temporally extend the basic R -
tree.) The R-tree and its pure spatial variants are a very common spatial data
structure used in the spatial database community. It is designed specifically
with disk storage and access time in mind and for data that is non -uniformly
distributed.) Ideally, a system for weather visualization will maintain higher
level constructs, such as a “tornado”, that themselves include geometric
extent. Being able to efficiently query and visualize these semantically
higher-level geometric objects requires spatio -temporal indices suitable for
interactive 3D visualization. This is the approach we take in this work.

2.2 The Dynamic Data Model

Doppler radar

reflectivity Mesocyclones

Atlanta

Figure 4-1.Doppler weather data and mesocyclones

To provide the appropriate 4D capabilities, the data model will use
semantic features extracted from the data to organize and control access to
the temporal hierarchy. This is a powerful approach based on content, and in
this respect differs from the usual metadata approach that emphasizes data
structure (formats, data types, data sizes, identifiers, etc.). In fact this
approach will cut across the usual metadata structure since da ta of different
types with different formats may be accessed simultaneously. (Access via
traditional metadata can be provided as well.)

The temporal semantic features are in terms of events. Thus for the
weather data there are weather events, which will be automatically generated
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as the data are acquired. Examples of weather events are mesocyclones that
track, over time, precipitation (amount and type), wind intensity, and wind
shear in storm cells. (See Figure 1) Predicted trajectories over a limited
period of time can be associated with each mesocyclone. Storm cells that are
likely candidates for tornadoes are also identified. The mesocyclones
describe the shapes, trajectories, and characteristics of extended storm fronts,
as shown in Figure 1. These mesocyclone features, developed by researchers
at the National Severe Storms Lab (NSSL) [Eil95], are generated on -the-fly
and are part of the Level 2 Doppler radar dataset provided to weather
forecasters and researchers. We are now working on features derived f rom
3D clustering of the Doppler radar data [Rib99] that will accompany the
mesocyclones. These will give the overall shape and extent of a storm
system and can be tracked in time. Average values for properties of the
contained Doppler data will be attache d to each cluster. We have developed
a fast, multiresolution 3D clustering approach that will be used here [Rib99].
Other automated techniques will extract weather events from 2D data.
Satellite imagery, for example, will be analyzed with a combination ofimage
processing and computer vision techniques that we have applied successfully
to identifying features in other types of geospatial imagery [Was01].

Features will be extracted by shape, color, and texture. The mappings (color,
for example) to weather va  riables provided with the satellite images
augmented by training using images of known weather events will permit
automatic extraction of weather events (with their shapes, locations, and
averaged properties) from the imagery. A goal and a challenge isto  ensure
that this feature extraction runs fast enough to fit into the Visual Earth

library real -time insertion process and that the 2D weather events have
multiresolution representations.

Whatever their source, the weather events are used to organize and
annotate the temporal hierarchy. A dynamic time tree is associated with the
weather (3D and 2D) spatial hierarchy. If there are no weather events for a
particular time range for a region, there will be no nodes in the time tree at
that level. Periodically, historical data are combined and older 3D data may
be discarded. For example, data without storm events may be kept for a
month and then discarded. During these periods of cleaning up, the weather
event time tree is reorganized and re -balanced to maximize e fficient
traversal. An accumulation procedure is used to provide averaged values,
ranges, deviations, etc. for weather events at higher levels of the time tree.

How should the dynamic time tree be integrated with the global
geospatial structure? We take th e position that the global structure is
foremost. Since 3D data tend to be massive, it is most efficient to first
traverse the global hierarchy to the region of interest (i.e., the region in view)
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and then access the dynamic time tree for that region. The global hierarchy is
a forest of quadtrees covering the earth; this structure has successfully been
used to organize terrain, urban, and static 3D weather data [Fau00, Dav98,
Dav99]. At a certain level in the hierarchy, there is the dynamic time tree

and a quadtree-aligned volume tree. (See Figure 2.) The volume tree is
described further in the next section. Traversal of the time tree finds the
events of interest and brings forth the volume tree for each one. Each volume
tree contains a sequence of time step s. The integration of time steps with
view-dependent levels of detail (LODSs) at this level ensures that one can
produce interactive animations of the weather event behavior. It is possible
to use spatial coherence between time steps to speed the selection of the
appropriate LOD and volumetric representation [She99]. This structure
shows the two levels at which time -dependence must be handled to have an
efficient visual query system. At the 4D history level, there is a structure in
terms of temporal events. At the level of the detailed 3D representation,
there are sequences of coherent time steps.

AAwAAWERWER!
Linked Global
Quadtrees

N Levels

Time Tree

Heerarchy Weather Events

=

Figure 4-2.Data-adapted global quadtree for time-dependent volume data

The data model presented here enables new and enriched queries, such as:

— Show me storms containing tornadoes for this region over the summer of
that year.

— Accumulate and display a time-ordered history of weather events for this
time range and region.

— Show me severe storms above this level of hail and lightning for this time
range and region.

— Show me storms with this range of rainfall that come from this direction
for this region and time period.

— Show me storms in this region and time period that traverse terrain above
this height (and similar queries using simple GIS capabilities embedded
in the global geospatial structure).
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These semantic queries lead to second, visual queries controlled by user
navigation of and interaction with the weathe  r (and terrain, if desired)
visualization. One mode of visual query would just display the weather event
features with further details, including full 3D information, generated by
user interaction.

Compression and Analysis: This approach provides several levels of
data compaction, which will be quite useful due to the variety of bandwidths
that digital library users may employ. If just weather event features are
transmitted, the amount of information transmitted may be a factor of a
thousand or more less than the full 3D dataset. Since LODs will be available
for these event features, this compression factor may even be greater for
initial transmission and display. The 3D weather data itself is in a continuous
resolution, view -dependent form [Jan02] so that only data for the part in
view and at a selected resolution need be sent. Thus a feedback mechanism
could be employed to trade lower resolution for a certain update rate, with
higher detail being filled in when the viewpoint stops moving. Higher detalil
could also be provided for user -selected regions in the 3D space (details on
demand). We are investigating the implementation of both these mechanism.
The client interface that will be employed by users who access the digital
library is set up so that the user interaction and rendering threads are separate
from the scene update thread. In this way user interactivity is not impaired
by slower retrieval and rendering of 3D detail, though scene information
may be at low resolution or missing during quick movemen ts of the
viewpoint—but it will fill in later.

It is important to note that the data model retains the full resolution data
(e.g, Level 2 Doppler radar data). Thus the full data are available for
analyses, and the hierarchical geospatial structure describe d further below
will permit quick access to these data. A very interesting question that we
plan to pursue is how the LODs can be used for analysis. The LODs are set
up for visualization and have error metrics appropriate to graphical detail.
We will investigate how these metrics translate into errors for analyses such
as rainfall density inferred by reflectivity signals, windfield structure over
time, or flooding extent using terrain elevation data. Once these measures are
in place our data model can suppo  rt multiresolution analyses where fast
overview calculations can be followed by more detailed and accurate
calculations based on user selection.
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2.3 System Organization

Figure 3 shows the high level system organization. Circles represent
some type of general c omputation process while the cylinders represent
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Figure 4-3.High level dataflow diagram of system.

permanent storage. This diagram emphasizes the  need for preprocessing
geometric data into a form that can be quickly rendered by the visualization
application. This rendered geometric data is too large to store in primary
memory. To maintain the most interactive frame rates possible requires
spatial p artitioning and indexing and pre -computed level of detalil
information for the rendered geometry, as described further below. The
volumetric data is analyzed by three processes. The Volumetric Render
Preprocessor computes spatial and temporal decomposition and LOD
information needed for interactive display. This data is stored as the
Volumetric Render Data. The above  -described weather event data are
geometric in nature and will have some visual geometric representations.
Again to allow for interactive 3D dis play some preprocessing steps may be
necessary to compute spatio -temporal decompositions and LODs for this
data. A third major process extracts higher level conceptual or semantic data.
This data is analogous to the “Knowl edge Component” in Mennis et al.’s
Pyramid Framework, which conceptually subsumes the weather events. This
higher level data may group related Doppler radar data, discrete geometric
weather phenomena, 3D lightning fields, satellite weather imagery, and
weather simulations into a single weather event. For instance, a weather
event might be ‘Atlanta Georgia Storm of July, 1998'. Finally, the
visualization system of course has the underlying terrain geometry and
imagery data. Terrain is visualized simultaneou sly with the above data; the
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terrain process dataflow is shown at the bottom of Figure 3 and is discussed
further in the next section.

The file format of the discrete geometric weather phenomena is basically
predetermined by software produced by weather ex perts such as researchers
at NSSL. The storage format for the volumetric weather render data, the
semantic data, and the discrete geometric render data, however, is part of the
visualization application, as described further below. The semantic data may
be best managed by an object oriented database. This is the tactic take by
Mennis et al. who use the Poet database. Several Open Source databases are
available such as the object relation DB, PostgreSQL [Pos02]. The semantic
data can reference the render data through either files names, integer id’s, or
perhaps the Render Data can be stored directly as BLOB (Binary Large
Object) using the DBMS. This would have some benefits such as leveraging
the client-server capability of the DBMS Server, but we are not aware of any
true comparisons of this approach with using separate files for storing
Render Data. In the present implementation we reference via file name.

3. SCALABLE, HIERARCHICAL 3D DATA
STRUCTURE

3.1 The Data Structure

In this section we specify the details of a  structure based on the data
model described in the last section. This structure is global in scale and will
accept different 3D data formats. . We choose an approach that is
customized for volumetric data but is still consistent with the handling of
terrain data [Fau00, Dav98] and static 3D objects such as buildings [Dav99]
on a global scale. In all cases we follow a linked global quadtree structure
(actually a linked “forest” of quadtrees that provides access to all parts of the
Earth) to a selected level and then switch to a mode customized for the data
type (e.g., volumetric, terrain, or 3D objects) for handling the highest LODs.

Our premise is that the linked global quadtrees provide an efficient and
scalable structure even for volumetric data; this is supported by the
performance results below. The problem for the volume structure then
reduces to choosing a hierarchy that fits into the global quadtree at an
appropriate level. We choose the organization shown in Figure 4. Time step
sequences are stored at the quadnode level, as discussed above, so this level
is chosen to provide sufficient amounts of data for efficiency in both detail
management and time sequencing for animation while not providing too
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much data to impede efficient access and paging. Att his point an additional
time structure could also be inserted [She99] to provide further efficiency in
rendering through temporal coherence. Several quadnodes might contribute
to a display frame, depending on the extent of the volumetric data and the
position of the viewpoint.
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Figure 4-4. Weather Event Index

For volumetric data the quadnode is divided into Nx x Ny x Nz bins
where Xx,y,z are the longi tude, latitude, and altitude directions, respectively.
The bin sort is fast (O(n) where n is the number of volumetric data
elements). This is a key step because the bins provide a structure that is
quickly aggregated into a hierarchy for detail management and for view
frustum culling. However, the data element positions are retained in the bins
for full resolution rendering (and analysis), if desired. The hierarchy
provides significant savings in memory space and retrieval cost since only
data element coord inates for viewable bins at the appropriate LOD are
retrieved. Note that the bins are not rectilinear in Cartesian space, a factor
that may affect some analysis or volume rendering algorithms. In general,
the bin widths in each direction are non -uniform (e.g., each of the bins in
the, say, Nz direction may have a different width). This gives useful
flexibility in distributing bins, for example, when atmospheric measurements
are concentrated near the ground with a fall-off in number at higher altitudes.
A sub-case, of course, is to have uniform bin widths in each direction.

Each of the dimensions N in the x,y,z directions is a power of 2. This
permits straightforward construction of a volume hierarchy that is binary in
each direction. Our tests show that this restriction does not impose an undue
limitation, at least for the types of atmospheric data we are likely to
encounter. The number of children at a given node will be 2, 4, or 8. If all
dimensions are equal, the hierarchy is an octree. Typically the avera ge
number of children is between 4 and 8. We restrict the hierarchy to the
following construction. (Others are possible.) Suppose that Nx = 2m, Ny =
2n, Nz = 2p whee m > n > p.Then there willbe p 8 -fold levels (i.e., each
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parent at that level has 8 chil dren), n-p 4-fold levels, and m -n 2-fold levels.
If two out of three exponents are equal, there will be only 8 -fold and 4 -fold
levels. The placement of 2, 4, and 8 -fold levels within the hierarchy will
depend on the distribution for the specific type of volumetric data.

Properties at parent nodes are derived from weighted averages of child
properties. The parent also carries the following weighting factors: (1) the
total raw volumetric data elements contained in the children; (2) the total
filled bins cont ained in the children; (3) the total bins contained in the
children. The quadnode level is chosen such that there are between1 -10 K
bins (i.e., leaf nodes in the volume hierarchy). This gives reasonable balance
between the costs of traversing global quadtree and volume hierarchies while
enabling effective handling of volumetric data in the lon/lat/altitude
dimensions. Note that the bin structure and volume hierarchy are static in
space. We can efficiently apply this structure even to distributions of
volumetric elements that move in space as long as the range of local spatial
densities (and the volume of the data) does not change much over time.

The bin sizes are chosen such that there are at most a few volumetric
elements in each bin. The reason for this ¢ hoice is that we want a smooth
transition between rendering of bin -based levels of detail and rendering of
the raw data. The final step in the LOD process is the transition from the
bins to the underlying raw data. Because the volume hierarchy permits fast
traversal, this choice is efficient even for sparse data with holes and high
density clumps, as shown in the application below.

Data Retrieval and Use: One must have a mechanism for retrieving
data for use in the time frame appropriate for the selected a pplication. The
application presented here involves interactive visualization (more
specifically exploratory visualization). The time frames for interactive, on -
the-fly visualization, as the volumetric time steps are acquired, and for
playback of histories , after the data are archived, may be different. In
particular the time frame for playback should be at least 10 frames per
second to insure continuous animation. In either case the time between user
interaction and system response should be 0.1 second or less to insure good
user performance. We shall discuss below the acquisition and display time
frames for weather data.

To support these interactive visualization requirements, we further
organize the volumetric structure as indicated at the bottom of Figur e 4. The
volume tree structure goes down to a certain level after which the bins are
arranged in volumetric blocks. The block can be either a 3D array of bins or
a list of filled bins, depending on whether the data distribution is dense or
sparse. We have found in our tests so far that a block containing one bin
gives good results. (In other words, the volume tree goes all the way to
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single bin leaf nodes.) However, the multi -bin block structure is available if

it should prove efficient for future data dist ributions. Ultimately, we expect
that the data distribution will inform the visualization technique used. It may
be sufficient to use traditional (continuous field) volume visualization
techniques for dense data, but different techniques may be better for sparse
data. We address this issue further below. This structure is set up to handle
simultaneous, overlapping datasets. These might include, for example,
different types of acquired weather data along with data from weather
simulations, all of which might have different spatial distributions. The
application below demonstrates the ability to handle overlapping datasets.

Scalability: To insure scalability, insertion in or access to the dynamic
data structure cannot depend on the overall size of the struc ture. Further
there must be a mechanism to extract data in constant size chunks and in
constant time no matter how large the data structure becomes. The
volumetric blocks are the key to meeting this requirement. Finally, an
efficient out -of-core mechanism is required. Here the volumetric blocks
allow a paging and caching procedure similar to that used for terrain [Fau0O,
Rib02, Dav98]. For the terrain case, pages in the size range of thousand
elements were shown to be efficiently paged and set in a priority queue for
rendering, with old pages being discarded. We use similar size pages for the
volumetric data. The results section shows how the scalability requirement is
met for a specific application.

For interactive visualization and exploration, data must be provided in an
appropriate range of LODs so that the amount of detail displayed does not
exceed an upper limit, no matter how much data are in view. The structures
described above have this capability. Lower resolution LODs can be
provided by intermediat e nodes in the geospatial quadtree or the volume
hierarchy, using the appropriate average values stored at the nodes. At the
highest resolution the bins disappear to reveal a representation of individual
data elements. (One can imagine, for example, a smoo th transparency
transition where a bin disappears and the data elements inside appear as a
user flies closer.) Extensions of view -dependent techniques for visual detail
management [Lin96, Hop98] can be used here. We will discuss the effect of
applying LODs in the results section below.

Out-of-Core Paging: We cannot usably apply scalability unless we
have an out -of-core strategy. Ours is related to that of Cox and Ellsworth
[Cox97] and has been shown to be effective for large scale terrain paging
[Dav9s8]. For volumetric data there is a volume paging thread with a server
and a manager. The server loads the volume tree skeleton (without data) for
gquadnodes in view and the manager decides which LOD should be loaded.
Traversal of the skeleton takes into account user viewpoint, direction, and
speed to minimize bad pages and to permit predictive paging. If, for



4. Visual Query of Time-Dependent 3D Weather in a Global 15
Geospatial Environment

example, the user is moving fast, pages may be skipped because they will be
out of view by the time they are loaded and rendered. Only at this point are
pages retrieved. The page contains a volume block whose size has been
determined, through testing, to provide a good balance between latency in
page 1/0 and number of pages needed for a view. This procedure has proved
efficient and flexible. Also, since the p  aging thread is separate from the
interaction and rendering threads, page latency does not affect interactivity.
Flexibility : The framework we have presented is quite flexible. It
depends only on general properties of the data such as their spatial range, the
total number of elements, and the average density range. It does not depend
on the details of the volume data distribution or its geometry or topology.
However, the data organization within the framework can change (e.g.,
locations where the volume tree sprouts with branches containing data), even
from one time step to the next, permitting significant customization for
efficient use. Because of complete coverage by the global geospatial
quadtree, spread in lat/lon extent or movement of a 3D field acros s the
earth’s surface is not a problem. The bin sizes, volumetric tree structure, and
block sizes can be tuned for a collection of datasets. One can then acquire
and insert several datasets for simultaneous display or analysis, even if they
are significant ly different in their detailed data element positions or
connectivity. The only thing that will change is which bins and thus which
nodes and branches in the volumetric structure are filled and linked. Our
results so far indicate that we will be able to au tomate the tuning of the data
organization and bin structure so that the system investigates a collection of
acquired data and automatically sets up the volumetric structure.

3.2 Results for Acquiring and Visualizing Time-
Dependent Data

We concentrate on the i nsertion of 3D Doppler radar data and weather
simulations in the same geospatial framework. These data have significantly
different organizations. Some work has been done on the visualization of 3D
Doppler data [Dju99, Jia01], but this work does not consid er LODs or their
management. In the present application we visualize weather, terrain, and
groups of buildings from the same general geospatial structure, which has
not been done before. The overall size of the data in the structure can be
quite large. The NEXRAD tri -agency radar provides 3 pieces of
information—reflectivity, velocity and spectrum width—at 9 to 14 elevation
scans every five minutes. This amounts to a volume of up to 50 MB of raw
data every 5 minutes. Typically there are multiple radars with  overlapping
coverage. The central Oklahoma site, for example, has 11 radars and the
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Peachtree City site near Atlanta (used in this paper) has 3 radars. Thus there
can be up to 55 MB of data streaming in every 5 minutes and nearly 7 GB of
weather data arch ived for a site over a 10 hour period when storm
development might be tracked. In addition there is a large amount of
geospatial data. For Georgia there is 30 M resolution terrain elevation for the
state and phototextured imagery at varying resolution (hig h resolution areas
up to 1 meter resolution in downtown Atlanta; 1 foot resolution at Georgia
Tech). In addition the database contains hundreds of 3D buildings for
downtown Atlanta and Georgia Tech. There is also 30 M resolution terrain
elevation and photo texture data for Oklahoma and environs. With 1 M
resolution terrain data now available for several of these locales, the terrain
database size will swell to several hundred gigabytes. We will explore the
scalability and efficiency of the volumetric data structure next.

distatice

Figure 4-5. Radar scan pattern

Doppler Data: The 3D volume is built up from a series of cone -shaped
radial sweeps as depicted in Fi gure 5. The datasets we consider here are
composed of 9 sweeps per time step, separated by angles from 1o at the first
sweep to 50 at the ninth sweep. The number of sweeps and the incremental
angle between sweeps can be adjusted, though this is not usually done in the
middle of data collection over the time span of a storm. In addition each
sweep has a time stamp that can be used to animate the volume collection. In
a sweep readings are collected along radial lines spaced about 10 apart in the
azimuthal direction. Data are then collected at evenly-spaced gates along the
radial line (Figure 5). However, different sweeps have different numbers of
gates; in general lower sweeps have more gates extending farther from the
radar. The total number of gates in 9 sweeps is approximately 1 M. But there
are usually only about 100 K valid readings for a given variable over a set of
sweeps. The positions of valid readings change from time step to time step.

It may be supposed that it would be more efficient to formulatea  data
structure and rendering algorithm that specifically takes account of the non -
uniform, curvilinear nature of the sweeps. This might be true if we were
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handling just one radar. But we are handling several radars with overlapping
sweeps; the spatial lay out of these radars vary from site to site. In addition
we are adding weather simulations, which tend to have more uniform data
patterns, and will add other types of data, such as 3D lightning fields. The
present volumetric data structure fulfills this need for flexibility.

Upon analysis, a good bin size that on average contains only a few data
elements and also is commensurate with the quadnode areas turns out to be
350 m x 350 m x 170 m. Bins of this size that contain filled gates have from
1to5of such gates with an average of around 2. This holds over the
complete time sequence and is typical for a large severe storm. The above
bin proportions are attractive for rendering in that all dimensions are of the
same order. Having several million bins inthe  volumetric tree provides a
good balance between the quadtree and volumetric tree portions of the data
organization. This can be achieved for the present bin sizes by choosing
quadnodes down 10 levels of the geospatial quadtree. The footprint for each
of these nodes is 50 KM x 50 KM, and the overall volume is 2500%M 4
Km. About 40 nodes are needed to cover the areal extent of 1 Doppler radar.

At each of the quadnodes there are 28 x 28 x 27 (256 x 256 x 128) bins.
This translates to a tree with four 8 -fold levels and one 4 -fold level. We
choose to place the 4 -fold level at the top of the tree, meaning that the first
subdivision is in the lon/lat directions only. After that, the tree behaves like
an octree.. All these results give specific details to the structure in Figure 4.

Weather Simulation: A typical mesoscale weather simulation, such as
MMB5, has grid points at 4 Km intervals. High resolution simulations for
local areas, which use MM5 as a starting point, have grid spacings of 1 KM
or greater. We as sume here a high resolution simulation on a regularly
spaced grid of 1 K1 x 1 KM x 0.5 KM over the volume of the Doppler
radars. A good bin size for this structueeda 4 x 4 x 4block of the Doppler
radar bins (140 M x 1400 M x 680 M). These bins will contain 1 simulation
element in most cases but 2 -4 elements in a few cases. The bins will fit into
the same volume tree structure as above, and the volumetric tree for this case
is 4 levels deep. A significant advantage of this approach is that now both
radar and weather simulation data are available in the same framework and
can be retrieved simultaneously for detailed rendering or analysis. In fact the
nodes can be traversed efficiently (as shown below) accessing either or both
radar and simulation data.

Performance Results: We are now ready to do some performance tests.
We loaded 100 time steps of 3D Doppler radar data for 1, 2, 3, or 4 radars.
The 2 radars were separated by 80.5 Km and the 3 and 4 radar cases were on
the vertices of an equilateral triang le and square, respectively, each with
sides of 80.5 Km. For these data a single bin structure and volume tree
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template can be used, but the actual tree will change from time step to time
step. At acquisition the bins are filled and nodes and links are cre  ated for
filled blocks in the tree structure. A Doppler radar volume is collected at the
NEXRAD site every 5 -7 minutes. A time budget of a minute or less for
sorting, inserting, and displaying the radar data would be sufficient for real -
time performance, given that there are other analyses that may be performed.
Among these is an analysis finding the locations, sizes, and intensities of
mesocyclones, which under certain conditions can indicate tornadoes.

Table 4-1.Times for filling the bins and linking the volumetric tree.

No. of Vol. Trees Blocks Bins Data Pts Creation
Radars Time (s)

1 67 85k .736M .761M 1.1-7.0

2 70 89k .755M 1.52M 1.1-8.0

3 98 136k 1.15M 2.28M 2.1-17.2
4 109 173k 1.48M 3.04M 3.2-23.5

The timing tests were run on an SGI Origin 200 server with 4 R12000
processors. The server has RAID disks and a Gigabit network connection to
a local network containing several PC -based and UNIX graphics
workstations. As shown in Table 1, sorting and insertion (for 1 radar) takes
only between 1.1 and 7 sec per time step for the valid data elements. The
range of creation times is due to the varying number of valid data elements
over the time sequence. These data were for a s evere storm with heavy
precipitation, so the upper limit of valid data points is near the maximum
expected. At 80.5 Km there is significant overlap between the radars so that
the timing for 2 radars is nearly the same as that for one. For a case where
the radars are far enough apart so that their extents just touch, the times
increase nearly linearly between 1 —4 radars. Thus timings for multiple
radars will be between these two extremes. The results show that insertion
times are well within our time budget even for several radars. Even when a
high resolution simulation is inserted over the range of several radars, the
total time will be within budget. For example, the high resolution weather
simulation described above will have number of data points and bins a factor
of 50 or more less than those in Table 1 for the areal extents used and will
not affect the total timings significantly. Note that much of this radar and
simulation insertion process can be done in parallel, if desired, greatly
reducing total times.

Even for the case of extensive storm activity, only a portion of the radar
data gates contain valid data, which are all that need be retrieved. Sometimes
analysts want to distinguish positions of all gates including those giving null
readings. This is easily done, however, by referring to a mask block structure
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where all elements are null and then comparing with the filled tree for a
given time step.

Table 4-2.Times for accessing data at leaf nodes within a selected volume.

Longitude Latitude  Altitude Ground Area Bins Worst
Size Size Accessed Case
Access
Time (s)
444km 444km 14000m 197136 km2 741k 0.183
222km 222km 7000m 49284 km2 109k 0.028
106km 106km 3500m 11236 km2 49k 0.021
53km 53km 3500m 2809 km2 37k 0.019
26.5km 26.5km 3500m 702 km2 15k 0.0048
13.3km 13.3km 3500m 177 km2 6k 0.0022
6.65km 6.65km 3500m  44.2 km2 2k 0.00091
3.33km 3.33km 3500m  11.1 km2 626 0.00040
1.67km 1.67km 3500m  2.78 km2 225 0.00033
0.835km  0.835km  3500m  0.697 km2 75 0.00021

Retrieval Times. To test retrieval time performance, Table 2 shows the
times to access all of the data at all leaf nodes that are within a particular
volume of the atmosphere. Ground area for this accessed volume ran ges
from almost 800,000 square KM down to less than one square KM. To
determine the worst case access time, we located the volume to be accessed
at numerous places within the radar volume.

As discussed above, an appropriate retrieval time for continuous
animation of dynamic data is 0.1 sec or less; in fact, if we allot equal
amounts of time to retrieval and rendering of the data, the retrieval time
should be no more than 0.05 sec. We see that this criterion is not met for the
largest volume in Table 2 (next page). However, the rendering algorithm
uses LODs and a view -dependent procedure, which will reduce the amount
of detail retrieved based on the screen space error metric used. The worst
case view will be where the volume data fills the screen and all data
elements are within the view frustum. Using a conservative LOD calculation
for this case, we find that a screen space error of 2 -3 pixels should suffice.
With LODs, the retrieval times for larger volumes than those shown in Table
2 level off. Also, a typi cal view will not be worst case since one may have
only part of the data in the view frustum (as when moving in for a close -up)
or the data may be farther away from the viewpoint.
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4, INTERACTIVE, ACCURATE VISUALIZATION
OF NON-UNIFORM DATA

The above hierarchic al structure provides efficiencies in rendering
volumetric data. Adjusting an error metric derived from the hierarchy (e.qg.,
in terms of the RMS deviation of scalar values contained in a node from
their average value) permits one to select from the multipl e resolutions
contained in the hierarchy. One could use a larger error for initial interactive
visualization of the volume and then, when pausing for more detailed
inspection, smaller errors for progressive refinement of the volumetric
rendering. Such a pr ocedure could also be employed for compression and
then progressive transmission of the volumetric data. Similar approaches
have been developed by others [Lau91]. The hierarchy also permits quick
culling, as the viewpoint changes, of volume elements thata re notin the
view frustum.

Interactive navigation of large scale data requires additional efficiencies.
Here some data elements may be close to the viewpoint, some at midview,
and others far away from the viewpoint. The rendering system should take
into account the projection of these elements onto the screen and thus their
perceivability to the user. Several neighboring elements that are small or far
away may fall within a single pixel. Such elements should be rendered at
lower resolution, resulting in an image that displays several LODs at once.
To be effective such a set of LODs should be updated every time the
viewpoint changes, which can be every frame for continuous navigation. To
achieve these goals, we have extended hierarchical splatting [Jan02] by
using a variation of the view-dependent approach that has been applied by us
[Lin96] and others [Hop98] to surface polygonal data.

Splat Structure: Several approaches have been applied to splat footprint
construction and compositing. Polygon and texture -based methods [Mer01,
Lau91, Rot00] using 2D or 3D textures can take advantage of graphics
hardware to composite and render overlapping polygons. These approaches
work well for regular data. However, for non-uniformly distributed data, one
must either constrain to uniform bounding boxes for the splats (Meredith et.
al. use cubic boxes [Mer01]) or face significant complications in correctly
projecting, sampling, and rendering non  -uniform splats. Using regular
bounding boxes amounts to an approximation that s mooths out non -
uniformities. We would like an approach that permits retention of these
details, although uniform splats may also be used.

We have chosen to construct splats that are not necessarily uniform in
their orientation or aspect ratios. However the y all fit into rectilinear
bounding boxes. The approach of Zwicker et. al. [Zwi01] permitting
efficient perspective projection and correct anti -aliasing for arbitrary
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elliptical kernels can thus be applied. Other approaches, including texture -
based methods , can be applied as well. Using splats of non -uniform
orientation and aspect ratio requires more computation than uniform splats.
However, the view -dependent hierarchical approach helps keep the splat
construction and rendering efficient. Interactive techn iques, such as magic
lenses, can also be applied.

The issue for a non -uniform distribution is illustrated with the following
example. A single elliptical splat, even if optimally oriented, cannot provide
uniform coverage for all the neighbors of the central data point in the wedge-
shaped cell of the Doppler radar. For example, if it provides correct coverage
for the top neighbors, it overlaps the bottom neighbors too much. On the
other hand, multiple elliptical splats can be oriented and sized to provide
better coverage over the cell. We have developed and are implementing a
procedure, based on the Voronoi cell describing the region around a point, to
place and orient splats to give more uniform coverage in non -uniform cells.
Closest splats are combined to g ive LODs. At the moment we use elliptical,
textured splats centered at the sample points with appropriate scale and
orientation. The splat construction and compositing could be replaced with
that of Zwicker et. al. [Zwi01], if desired.

Figure 4-6.(left) Image of Doppler radar reflectivities over North Georgia. Heavy rainfall is
evident along a front from the southwest towards the center (yellow and red splats). Doppler
velocities are shown in the right image for the same time step. Because the winds are heading
northeast, the northeast half show positive velocities (away from the radar) and the southwest

half show negative velocities (toward the radar).

Results: Figure 6 (left) shows a volume rendering of the reflectivity
readings from a NEXRAD Doppler Radar covering North Georgia for a
severe storm that passed over the Atlanta area in late March 1996. The red
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and yellow band running North -South through the central region is an area
of very heavy rainfall. The color bars to the bottom left show the transfer
function from reflectivity to RGBA values. The left bar is RGB and the right
two bars show RGBA blended with black and white. Figure 6 (right) shows
the velocity readings of the same storm at the same time. The major feature
running from Northwest to Southeast is the line perpendicular to the wind
direction for the entire storm. Because Doppler radar gives velocity on  ly
along each radial line, there will be a signh change in velocity values where
the radar is perpendicular to the wind direction. In Figure 6 right, the storm
is heading Northeast. We have set the color ramp to change abruptly from
cyan (positive) to blue (negative). Further result are in Jang et. al. [Jan02].
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