636 research outputs found

    Turnos de 7 horas versus 12 horas en enfermería intensiva: vivir a contratiempo

    Get PDF
    Resumen Los turnos de trabajo tienen repercusión sobre el bienestar de los profesionales sanitarios influyendo en su calidad de vida. El objetivo principal de este estudio es describir las consecuencias que tiene el turno de trabajo diurno de 12 h respecto al de 7 h en los profesionales de enfermería que trabajan en Unidades de Cuidados Intensivos. Se trata así de un estudio descriptivo transversal en 2 hospitales de tercer nivel de Barcelona: Hospital Clínico y Hospital Vall d"Hebron (turnos de 7 h y 12 h respectivamente). La recogida de datos se ha realizado mediante cuestionario ad hoc de 29 preguntas cerradas, anónimo y autoadministrado, basado en 2 escalas: Standard Shiftwork Index y Shiftwork locus of control. Dichos datos fueron procesados a través del programa SPSS V.18.0. De las 85 encuestas realizadas 52 fueron válidas: 22 en el Hospital Clínico de Barcelona y 30 en el Hospital Vall d"Hebron. Cabe destacar que los profesionales encuestados que trabajan en turno de 12 h expresan niveles superiores de conciliación laboral y personal, concretamente en tiempo de ocio a disfrutar (× 2: 10,635; p = 0,031) y tiempo de dedicación familia-amigos, así como niveles más bajos de percepción de fatiga. No se han encontrado diferencias entre el tipo de turno y facilidad de desarrollo del trabajo profesional, a pesar de que el turno de 12 h presenta niveles más altos

    Earthshine observation of vegetation and implication for life detection on other planets - A review of 2001 - 2006 works

    Full text link
    The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planet's atmosphere (O2O_2, O3O_3, CO2CO_2 etc.) have been identified as possible global biomarkers, we review here the detectability of a signature of life from the planet's surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the "Vegetation Red Edge" (VRE). Moreover vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus considering it as a potential global biomarker is relevant. Earthshine allows to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The egetation spectral signature is detected as a small 'positive shift' of a few percents above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earth's phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, moreover considering the possibility of mineral artifacts and the question of 'red edge' universality in the Universe.Comment: Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006) to appear in a hardcopy volume of the ISSI Space Science Series, Eds, J. Bada et al., and also in an issue of Space Science Reviews. 13 pages, 8 figures, 1 tabl

    Fully dynamic recognition of proper circular-arc graphs

    Get PDF
    We present a fully dynamic algorithm for the recognition of proper circular-arc (PCA) graphs. The allowed operations on the graph involve the insertion and removal of vertices (together with its incident edges) or edges. Edge operations cost O(log n) time, where n is the number of vertices of the graph, while vertex operations cost O(log n + d) time, where d is the degree of the modified vertex. We also show incremental and decremental algorithms that work in O(1) time per inserted or removed edge. As part of our algorithm, fully dynamic connectivity and co-connectivity algorithms that work in O(log n) time per operation are obtained. Also, an O(\Delta) time algorithm for determining if a PCA representation corresponds to a co-bipartite graph is provided, where \Delta\ is the maximum among the degrees of the vertices. When the graph is co-bipartite, a co-bipartition of each of its co-components is obtained within the same amount of time.Comment: 60 pages, 15 figure

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    Atrioventricular septal defects among infants in Europe: a population-based study of prevalence, associated anomalies, and survival.

    Get PDF
    OBJECTIVE: To describe the epidemiology of chromosomal and non-chromosomal cases of atrioventricular septal defects in Europe. METHODS: Data were obtained from EUROCAT, a European network of population-based registries collecting data on congenital anomalies. Data from 13 registries for the period 2000-2008 were included. RESULTS: There was a total of 993 cases of atrioventricular septal defects, with a total prevalence of 5.3 per 10,000 births (95% confidence interval 4.1 to 6.5). Of the total cases, 250 were isolated cardiac lesions, 583 were chromosomal cases, 79 had multiple anomalies, 58 had heterotaxia sequence, and 23 had a monogenic syndrome. The total prevalence of chromosomal cases was 3.1 per 10,000 (95% confidence interval 1.9 to 4.3), with a large variation between registers. Of the 993 cases, 639 cases were live births, 45 were stillbirths, and 309 were terminations of pregnancy owing to foetal anomaly. Among the groups, additional associated cardiac anomalies were most frequent in heterotaxia cases (38%) and least frequent in chromosomal cases (8%). Coarctation of the aorta was the most common associated cardiac defect. The 1-week survival rate for live births was 94%. CONCLUSION: Of all cases, three-quarters were associated with other anomalies, both chromosomal and non-chromosomal. For infants with atrioventricular septal defects and no chromosomal anomalies, cardiac defects were often more complex compared with infants with atrioventricular septal defects and a chromosomal anomaly. Clinical outcomes for atrioventricular septal defects varied between regions. The proportion of termination of pregnancy for foetal anomaly was higher for cases with multiple anomalies, chromosomal anomalies, and heterotaxia sequence

    Beta-Blocker Use in Pregnancy and Risk of Specific Congenital Anomalies: A European Case-Malformed Control Study.

    Get PDF
    The prevalence of chronic hypertension is increasing in pregnant women. Beta-blockers are among the most prevalent anti-hypertensive agents used in early pregnancy. The objective of this study was to investigate whether first-trimester use of beta-blockers increases the risk of specific congenital anomalies in offspring. A population-based case-malformed control study was conducted in 117,122 registrations of congenital anomalies from 17 European Concerted Action on Congenital Anomalies and Twins (EUROCAT) registries participating in EUROmediCAT with data for all or part of the period between 1995 and 2013. Associations previously reported in the literature (signals) were tested and an exploratory analysis was performed to identify new signals. Odds ratios of exposure to any beta-blocker or to a beta-blocker subgroup were calculated for each signal anomaly compared with two control groups (non-chromosomal, non-signal anomalies and chromosomal anomalies). The exploratory analyses were performed for each non-signal anomaly compared with all the other non-signal anomalies. The signals from the literature (congenital heart defects, oral clefts, neural tube defects and hypospadias) were not confirmed. Our exploratory analysis revealed that multi-cystic renal dysplasia had significantly increased odds of occurring after maternal exposure to combined alpha- and beta-blockers (adjusted odds ratio 3.8; 95% confidence interval 1.3-11.0). Beta-blocker use in the first trimester of pregnancy was not found to be associated with a higher risk of specific congenital anomalies in the offspring, but a new signal between alpha- and beta-blockers and multi-cystic renal dysplasia was found. Future large epidemiological studies are needed to confirm or refute our findings

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    A Review of Fiber-Reinforced Injection Molding: Flow Kinematics and Particle Orientation

    Get PDF
    The existing flow and particle orientation models applicable to fiber- reinforced injection molding are reviewed. After a brief description of injection molding, previous studies on the flow kinematics and fiber reinforcement are presented. Basics of Hele-Shaw flows are described Including the commonly used viscosity models and foun tain flow effects. Some of the existing models for particle orientation are analyzed with particular emphasis on the amsotropic description of the material system. Concentration regions for short fiber suspensions are defined and relevant constitutive equations are dis cussed. A few example solutions are also given which describe the three-dimensional ori entation field for the filling of a sudden expansion cavity, depicting skin-core orientation structure.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore