246 research outputs found
Gamow-Teller Resonances Observed in 90,92,94-Zr(p,n) at 120 and 160 MeV
Supported by the National Science Foundation and Indiana Universit
Evolution of cosmic string configurations
We extend and develop our previous work on the evolution of a network of
cosmic strings. The new treatment is based on an analysis of the probability
distribution of the end-to-end distance of a randomly chosen segment of
left-moving string of given length. The description involves three distinct
length scales: , related to the overall string density, , the
persistence length along the string, and , describing the small-scale
structure, which is an important feature of the numerical simulations that have
been done of this problem. An evolution equation is derived describing how the
distribution develops in time due to the combined effects of the universal
expansion, of intercommuting and loop formation, and of gravitational
radiation. With plausible assumptions about the unknown parameters in the
model, we confirm the conclusions of our previous study, that if gravitational
radiation and small-scale structure effects are neglected, the two dominant
length scales both scale in proportion to the horizon size. When the extra
effects are included, we find that while and grow,
initially does not. Eventually, however, it does appear to scale, at a much
lower level, due to the effects of gravitational back-reaction.Comment: 61 pages, requires RevTex v3.0, SUSSEX-TH-93/3-4,
IMPERIAL/TP/92-93/4
Scaling in Numerical Simulations of Domain Walls
We study the evolution of domain wall networks appearing after phase
transitions in the early Universe. They exhibit interesting dynamical scaling
behaviour which is not yet well understood, and are also simple models for the
more phenomenologically acceptable string networks. We have run numerical
simulations in two- and three-dimensional lattices of sizes up to 4096^3. The
theoretically predicted scaling solution for the wall area density A ~ 1/t is
supported by the simulation results, while no evidence of a logarithmic
correction reported in previous studies could be found. The energy loss
mechanism appears to be direct radiation, rather than the formation and
collapse of closed loops or spheres. We discuss the implications for the
evolution of string networks.Comment: 7pp RevTeX, 9 eps files (including six 220kB ones
Energy Systematics of the Giant Gamow-Teller Resonance and a Charge-Exchange Dipole Spin-Flip Resonance
This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit
Evidence against or for topological defects in the BOOMERanG data ?
The recently released BOOMERanG data was taken as ``contradicting topological
defect predictions''. We show that such a statement is partly misleading.
Indeed, the presence of a series of acoustic peaks is perfectly compatible with
a non-negligible topological defects contribution. In such a mixed perturbation
model (inflation and topological defects) for the source of primordial
fluctuations, the natural prediction is a slightly lower amplitude for the
Doppler peaks, a feature shared by many other purely inflationary models. Thus,
for the moment, it seems difficult to rule out these models with the current
data.Comment: 4 pages, 1 figure. Some changes following extraordinarily slow
referee Reports and new data. Main results unchanged (sorry
Dilatonic current-carrying cosmic strings
We investigate the nature of ordinary cosmic vortices in some scalar-tensor
extensions of gravity. We find solutions for which the dilaton field condenses
inside the vortex core. These solutions can be interpreted as raising the
degeneracy between the eigenvalues of the effective stress-energy tensor,
namely the energy per unit length U and the tension T, by picking a privileged
spacelike or timelike coordinate direction; in the latter case, a phase
frequency threshold occurs that is similar to what is found in ordinary neutral
current-carrying cosmic strings. We find that the dilaton contribution for the
equation of state, once averaged along the string worldsheet, vanishes, leading
to an effective Nambu-Goto behavior of such a string network in cosmology, i.e.
on very large scales. It is found also that on small scales, the energy per
unit length and tension depend on the string internal coordinates in such a way
as to permit the existence of centrifugally supported equilibrium
configuration, also known as vortons, whose stability, depending on the very
short distance (unknown) physics, can lead to catastrophic consequences on the
evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to
appear in Phys. Rev.
European and Asian contribution to the genetic diversity of mainland South American chickens
Chickens (Gallus gallus domesticus) from the Americas have long been recognized as descendants of European chickens, transported by early Europeans since the fifteenth century. However, in recent years, a possible pre-Columbian introduction of chickens to South America by Polynesian seafarers has also been suggested. Here, we characterize the mitochondrial control region genetic diversity of modern chicken populations from South America and compare this to a worldwide dataset in order to investigate the potential maternal genetic origin of modern-day chicken populations in South America. The genetic analysis of newly generated chicken mitochondrial control region sequences from South America showed that the majority of chickens from the continent belong to mitochondrial haplogroup E. The rest belongs to haplogroups A, B and C, albeit at very low levels. Haplogroup D, a ubiquitous mitochondrial lineage in Island Southeast Asia and on Pacific Islands is not observed in continental South America. Modern-day mainland South American chickens are, therefore, closely allied with European and Asian chickens. Furthermore, we find high levels of genetic contributions from South Asian chickens to those in Europe and South America. Our findings demonstrate that modern-day genetic diversity of mainland South American chickens appear to have clear European and Asian contributions, and less so from Island Southeast Asia and the Pacific Islands. Furthermore, there is also some indication that South Asia has more genetic contribution to European chickens than any other Asian chicken populations.Michael B. Herrera, Spiridoula Kraitsek, Jose A. Alcalde, Daniel Quiroz .... Vicki Thomson ... Jeremy J. Austin ... et al
Level Set Method for the Evolution of Defect and Brane Networks
A theory for studying the dynamic scaling properties of branes and
relativistic topological defect networks is presented. The theory, based on a
relativistic version of the level set method, well-known in other contexts,
possesses self-similar ``scaling'' solutions, for which one can calculate many
quantities of interest. Here, the length and area densities of cosmic strings
and domain walls are calculated in Minkowski space, and radiation, matter, and
curvature-dominated FRW cosmologies with 2 and 3 space dimensions. The scaling
exponents agree the naive ones based on dimensional analysis, except for cosmic
strings in 3-dimensional Minkowski space, which are predicted to have a
logarithmic correction to the naive scaling form. The scaling amplitudes of the
length and area densities are a factor of approximately 2 lower than results
from numerical simulations of classical field theories. An expression for the
length density of strings in the condensed matter literature is corrected.Comment: 46pp LaTeX, revtex4(preprint), 1 eps figure, revised for publication.
Note title chang
Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships
Aim: Understanding the spatial distribution of high priority habitats and
developing predictive models using climate and environmental variables to
replicate these distributions are desirable conservation goals. The aim of this
study was to model and elucidate the contributions of climate and topography to
the distribution of a priority blanket bog habitat in Ireland, and to examine how
this might inform the development of a climate change predictive capacity for
peat-lands in Ireland.
Methods: Ten climatic and two topographic variables were recorded for grid
cells with a spatial resolution of 1010 km, covering 87% of the mainland
land surface of Ireland. Presence-absence data were matched to these variables
and generalised linear models (GLMs) fitted to identify the main climatic and
terrain predictor variables for occurrence of the habitat. Candidate predictor
variables were screened for collinearity, and the accuracy of the final fitted GLM
was evaluated using fourfold cross-validation based on the area under the curve
(AUC) derived from a receiver operating characteristic (ROC) plot. The GLM
predicted habitat occurrence probability maps were mapped against the actual
distributions using GIS techniques.
Results: Despite the apparent parsimony of the initial GLM using only climatic
variables, further testing indicated collinearity among temperature and precipitation
variables for example. Subsequent elimination of the collinear variables and
inclusion of elevation data produced an excellent performance based on the AUC
scores of the final GLM. Mean annual temperature and total mean annual
precipitation in combination with elevation range were the most powerful
explanatory variable group among those explored for the presence of blanket
bog habitat.
Main conclusions: The results confirm that this habitat distribution in general
can be modelled well using the non-collinear climatic and terrain variables tested
at the grid resolution used. Mapping the GLM-predicted distribution to the
observed distribution produced useful results in replicating the projected
occurrence of the habitat distribution over an extensive area. The methods
developed will usefully inform future climate change predictive modelling for
Irelan
- …