3 research outputs found

    Bayesian inference of population expansions in domestic bovines

    Get PDF
    The past population dynamics of four domestic and one wild species of bovine were estimated using Bayesian skyline plots, a coalescent Markov chain Monte Carlo method that does not require an assumed parametric model of demographic history. Four domestic species share a recent rapid population expansion not visible in the wild African buffalo (Syncerus caffer). The estimated timings of the expansions are consistent with the archaeological records of domestication

    Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study we compare outlier loci detected using a <it>F<smcaps>ST </smcaps></it>based method with those identified by a recently described method based on spatial analysis (SAM). We tested a panel of single nucleotide polymorphisms (SNPs) previously genotyped in individuals of goat breeds of southern areas of the Mediterranean basin (Italy, Greece and Albania). We evaluate how the SAM method performs with SNPs, which are increasingly employed due to their high number, low cost and easy of scoring.</p> <p>Results</p> <p>The combined use of the two outlier detection approaches, never tested before using SNP polymorphisms, resulted in the identification of the same three loci involved in milk and meat quality data by using the two methods, while the <it>F<smcaps>ST </smcaps></it>based method identified 3 more loci as under selection sweep in the breeds examined.</p> <p>Conclusion</p> <p>Data appear congruent by using the two methods for <it>F<smcaps>ST </smcaps></it>values exceeding the 99% confidence limits. The methods of <it>F<smcaps>ST </smcaps></it>and SAM can independently detect signatures of selection and therefore can reduce the probability of finding false positives if employed together. The outlier loci identified in this study could indicate adaptive variation in the analysed species, characterized by a large range of climatic conditions in the rearing areas and by a history of intense trade, that implies plasticity in adapting to new environments.</p

    Microsatellite diversity of the Nordic type of goats in relation to breed conservation : how relevant is pure ancestry?

    No full text
    In the last decades, several endangered breeds of livestock species have been re-established effectively. However, the successful revival of the Dutch and Danish Landrace goats involved crossing with exotic breeds and the ancestry of the current populations is therefore not clear. We have generated genotypes for 27 FAO-recommended microsatellites of these landraces and three phenotypically similar Nordic-type landraces and compared these breeds with central European, Mediterranean and south-west Asian goats. We found decreasing levels of genetic diversity with increasing distance from the south-west Asian domestication site with a south-east-to-north-west cline that is clearly steeper than the Mediterranean east-to-west cline. In terms of genetic diversity, the Dutch Landrace comes next to the isolated Icelandic breed, which has an extremely low diversity. The Norwegian coastal goat and the Finnish and Icelandic landraces are clearly related. It appears that by a combination of mixed origin and a population bottleneck, the Dutch and Danish Land-races are separated from the other breeds. However, the current Dutch and Danish populations with the multicoloured and long-horned appearance effectively substitute for the original breed, illustrating that for conservation of cultural heritage, the phenotype of a breed is more relevant than pure ancestry and the genetic diversity of the original breed. More in general, we propose that for conservation, the retention of genetic diversity of an original breed and of the visual phenotype by which the breed is recognized and defined needs to be considered separately
    corecore