6,299 research outputs found

    Temperature in complex networks

    Get PDF
    Various statistical-mechanics approaches to complex networks have been proposed to describe expected topological properties in terms of ensemble averages. Here we extend this formalism by introducing the fundamental concept of graph temperature, controlling the degree of topological optimization of a network. We recover the temperature-dependent version of various important models as particular cases of our approach, and show examples where, remarkably, the onset of a percolation transition, a scale-free degree distribution, correlations and clustering can be understood as natural properties of an optimized (low-temperature) topology. We then apply our formalism to real weighted networks and we compute their temperature, finding that various techniques used to extract information from complex networks are again particular cases of our approach

    Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device

    Get PDF
    Wormlike micellar surfactant solutions are encountered in a wide variety of important applications, including enhanced oil recovery and ink-jet printing, in which the fluids are subjected to high extensional strain rates. In this contribution we present an experimental investigation of the flow of a model wormlike micellar solution (cetyl pyridinium chloride and sodium salicylate in deionised water) in a well-defined stagnation point extensional flow field generated within a microfluidic cross-slot device. We use micro-particle image velocimetry (m-PIV) and full-field birefringence microscopy coupled with macroscopic measurements of the bulk pressure drop to make a quantitative characterization of the fluid’s rheological response over a wide range of deformation rates. The flow field in the micromachined cross-slot is first characterized for viscous flow of a Newtonian fluid, and m-PIV measurements show the flow field remains symmetric and stable up to moderately high Reynolds number, Re z 20, and nominal strain rate, _3nom z 635 s1. By contrast, in the viscoelastic micellar solution the flow field remains symmetric only for low values of the strain rate such that _3nom # lM1, where lM ¼ 2.5 s is the Maxwell relaxation time of the fluid. In this stable flow regime the fluid displays a localized and elongated birefringent strand extending along the outflow streamline from the stagnation point, and estimates of the apparent extensional viscosity can be obtained using the stressoptical rule and from the total pressure drop measured across the cross-slot channel. For moderate deformation rates (_3nom $ lM1) the flow remains steady, but becomes increasingly asymmetric with increasing flow rate, eventually achieving a steady state of complete anti-symmetry characterized by a dividing streamline and birefringent strand connecting diagonally opposite corners of the cross-slot. Eventually, as the nominal imposed deformation rate is increased further, the asymmetric divided flow becomes time dependent. These purely elastic instabilities are reminiscent of those observed in crossslot flows of polymer solutions, but seem to be strongly influenced by the effects of shear localization of the micellar fluid within the microchannels and around the re-entrant corners of the cross-slot

    A visual conflict hypothesis for global-local visual deficits in Williams Syndrome: simulations and data

    Get PDF
    Individuals with Williams Syndrome demonstrate impairments in visuospatial cognition. This has been ascribed to a local processing bias. More specifically, it has been proposed that the deficit arises from a problem in disengaging attention from local features. We present preliminary data from an integrated empirical and computational exploration of this phenomenon. Using a connectionist model, we first clarify and formalize the proposal that visuospatial deficits arise from an inability to locally disengage. We then introduce two empirical studies using Navon-style stimuli. The first explored sensitivity to local vs. global features in a perception task, evaluating the effect of a manipulation that raised the salience of global organization. Thirteen children with WS exhibited the same sensitivity to this manipulation as CA-matched controls, suggesting no local bias in perception. The second study focused on image reproduction and demonstrated that in contrast to controls, the children with WS were distracted in their drawings by having the target in front of them rather than drawing from memory. We discuss the results in terms of an inability to disengage during the planning stage of reproduction due to over-focusing on local elements of the current visual stimulus

    Inter-ethnic relations among black students at a South African higher education institution

    Get PDF
    This study explored the inter-ethnic relations and experiences of students at a higher education institution, using an exploratory case study approach. Purposive sampling was used to select students belonging to black South African ethnic groups. Semi-structured interviews were used to collect data from three participants; interpretative phenomenological analysis was used for analysis. The themes extracted were ethnic identity: identity confusion vs. certainty; personal experiences of inter-ethnic relations; and majority and minority ethnic groups’ experiences. Identity salience was found to not particularly be integral to the cultivation of inter-ethnic relations. Moreover, participants’ inter-ethnic experiences were varied; some were positive, and others, negative. Relations between majority and minority ethnic groups are seemingly supported by existing literature, as majority ethnic group members typically initiated negative interactions, more so than did minority ethnic groups. Future studies should interrogate inter-ethnic dynamics on a broader scale, and explore ethnic bullying and its impact on inter-ethnic relations

    Surface flashover of oil-immersed dielectric materials in uniform and non-uniform fields

    Get PDF
    The applied electrical fields required to initiate surface flashover of different types of dielectric material immersed in insulating oil have been investigated, by applying impulses of increasing peak voltage until surface flashover occurred. The behavior of the materials in repeatedly over-volted gaps was also analyzed in terms of breakdown mode (some bulk sample breakdown behaviour was witnessed in this regime), time to breakdown, and breakdown voltage. Cylindrical samples of polypropylene, low-density polyethylene, ultra-high molecular weight polyethylene, and Rexolite, were held between two electrodes immersed in insulating oil, and subjected to average applied electrical fields up to 870 kV/cm. Tests were performed in both uniform- and non-uniform-fields, and with different sample topologies. In applied field measurements, polypropylene required the highest levels of average applied field to initiate flashover in all electrode configurations tested, settling at similar to 600 kV/cm in uniform fields, and similar to 325 kV/cm in non-uniform fields. In over-volted point-plane gaps, ultra-high molecular weight polyethylene exhibited the longest pre-breakdown delay times. The results will provide comparative data for system designers for the appropriate choice of dielectric materials to act as insulators for high-voltage, pulsed-power machines

    The suitability of N2 to replace SF6 in a triggered spark-gap switch for pulsed power applications

    Get PDF
    The high dielectric strength of sulphur hexafluoride (SF6) when compared with other gases, coupled with safety benefits such as non-flammability and non-toxicity, has seen the widespread use of SF6 for the insulation of switching components. However, SF6 is now widely recognised as a highly damaging greenhouse gas, and investigations of the switching properties of alternative gases to replace SF6 within the bounds of existing system topologies are required. In the present paper, a comparative study has been carried out on a triggered spark-gap of type presently deployed in industrial pulsed-power machines, to determine the suitability of nitrogen (N2) to replace SF6 as the switching medium, without compromising on functionality. Experiments were performed with fast-rising trigger pulses to minimise the delay time to breakdown and jitter, and three distinct operational regimes have been identified for both gases as the pressure inside the switch is increased. The static breakdown characteristics and upper pressure boundaries of operation have been determined for both gases at a range of dc charging voltages. Measurements of the time to breakdown have shown jitters as low as 1.3 ns when operating in N2, highlighting the potential of N2 to replace SF6 without the need for re-design or replacement of the presently used switch

    Impulse-driven surface breakdown data : a Weibull statistical analysis

    Get PDF
    Surface breakdown of oil-immersed solids chosen to insulate high-voltage, pulsed-power systems is a problem that can lead to catastrophic failure. Statistical analysis of the breakdown voltages, or times, associated with such liquid-solid interfaces can reveal useful information to aid system designers in the selection of solid materials. Described in this paper are the results of a Weibull statistical analysis, applied to both breakdown-voltage data and time-to-breakdown data generated in gaps consisting of five different solid polymers immersed in mineral oil. Values of the location parameter γ provide an estimate of the applied voltage below which breakdown will not occur, and under uniform-field conditions, γ varied from 192 kV (480 kV/cm) for polypropylene to zero for ultra-high molecular weight polyethylene. Longer times to breakdown were measured for UHMWPE when compared with the other materials. However, high values of the shape parameter β reported in the present paper suggest greater sensitivity to an increase in applied voltage – that is, the probability of breakdown increases more sharply with increasing applied voltage for UHMWPE compared to the other materials. Analysing peak-applied-voltage data, only PP consistently reflected a low value of β across the different sets of test conditions. In general, longer mean times to breakdown were found for solid materials of εr more closely matched to that of the surrounding mineral oi

    Improvement of livestock production in crop-animal systems in rainfed agro-ecological zones of South-East Asia

    Get PDF

    Computational studies on gas phase polyborate anions

    Get PDF
    The borate anions [B(OH)4]�, [B2O(OH)5]�, [B3O3(OH)4]�, [B3O3(OH)5]2�, [B3O3(OH)6]3�, [B4O5(OH)4]2�, [B5O6(OH)4]�, and [B7O9(OH)5]2� (2 isomers) and the neutral orthoboric and metaboric acids, B(OH)3 and B3O3(OH)3, have been structurally optimised in the gas phase at the B3LYP/6-311++G(d,p) level. Energetic data, combined with analogous data for �building blocks� H2O and [OH]�, has enabled their relative gas phase stabilities (all exothermic) to be determined using an isodesmic approach as: [B5O6(OH)4]� > [B3O3(OH)4]� > [B(OH)4]� > [B7O9(OH)5]2� > [B4O5(OH)4]2� > [B3O3(OH)5]2�. The two isomers of [B7O9(OH)5]2� have similar total energies although the �ribbon� isomer is calculated to be more stable by only 10.0 kJ mol�1. QTAIM analyses have been undertaken on all computed structures, and QTAIM charges for H, O and B atoms have been calculated. It is concluded that H-bond interactions dominate the solid-state energetics of non-metal cation polyborate salts
    corecore