306 research outputs found

    Valence-electron transfer and a metal-insulator transition in a strongly correlated perovskite oxide

    Full text link
    We present transport and thermal data for the quadruple-perovskites MCu3(Ti1-xRux)4O12 where 0 < x < 1. A metal-insulator transition (MIT) occurs for Ru concentrations x~0.75. At the same time, the Cu2+ antiferromagnetic state is destroyed and it's magnetic entropy suppressed by Ru on a 1:1 basis. This implies that each Ru transfers an electron to a Cu ion and thus the MIT correlates with filling the Cu 3d shell. The Cu spin entropy in this strongly correlated electron material provides a unique probe among MIT systems.Comment: 15 pages, 4 figures, 1 tabl

    First principles investigation of the electronic structure of La2MnNiO6: A room-temperature insulating ferromagnet

    Full text link
    Using first principles calculations within DFT based on the full potential APW+lo method, we calculated the electronic and magnetic structures for the ferromagnetic and antiferromagnetic states of La2MnNiO6 and analyzed the site projected density of states and electronic band structures. Our calculations show that the ground state of La2MnNiO6 is ferromagnetic insulating with the magnetization in agreement with Hund's first rule and experimental findings.Comment: 10 pages, 3 figure

    Who are the obese? A cluster analysis exploring subgroups of the obese

    Get PDF
    Background Body mass index (BMI) can be used to group individuals in terms of their height and weight as obese. However, such a distinction fails to account for the variation within this group across other factors such as health, demographic and behavioural characteristics. The study aims to examine the existence of subgroups of obese individuals. Methods Data were taken from the Yorkshire Health Study (2010–12) including information on demographic, health and behavioural characteristics. Individuals with a BMI of ≥30 were included. A two-step cluster analysis was used to define groups of individuals who shared common characteristics. Results The cluster analysis found six distinct groups of individuals whose BMI was ≥30. These subgroups were heavy drinking males, young healthy females; the affluent and healthy elderly; the physically sick but happy elderly; the unhappy and anxious middle aged and a cluster with the poorest health. Conclusions It is important to account for the important heterogeneity within individuals who are obese. Interventions introduced by clinicians and policymakers should not target obese individuals as a whole but tailor strategies depending upon the subgroups that individuals belong to

    On the magnetism of Ln{2/3}Cu{3}Ti{4}O{12} (Ln = lanthanide)

    Get PDF
    The magnetic and thermodynamic properties of the complete Ln2/3_{2/3}Cu3_3Ti4_4O12_{12} series were investigated. Here LnLn stands for the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. %Most of the compounds were prepared as single phase polycrystalline powder %without any traces of impurities. Marginal amounts of %impurities (<2(< 2%) were detected Ln=Ln= Gd, Er, and Tm. %Significant amounts of impurity phases were found for Ln=Ln= Ce and Yb. All the samples investigated crystallize in the space group Im3ˉIm\bar{3} with lattice constants that follow the lanthanide contraction. The lattice constant of the Ce compound reveals the presence of Ce4+^{4+} leading to the composition Ce1/2_{1/2}Cu3_3Ti4_4O12_{12}. From magnetic susceptibility and electron-spin resonance experiments it can be concluded that the copper ions always carry a spin S=1/2S=1/2 and order antiferromagnetically close to 25\,K. The Curie-Weiss temperatures can approximately be calculated assuming a two-sublattice model corresponding to the copper and lanthanide ions, respectively. It seems that the magnetic moments of the heavy rare earths are weakly coupled to the copper spins, while for the light lanthanides no such coupling was found. The 4f4f moments remain paramagnetic down to the lowest temperatures, with the exception of the Tm compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic singlet ground state of the crystal-field split 4f4f manifold. From specific-heat measurements we accurately determined the antiferromagnetic ordering temperature and obtained information on the crystal-field states of the rare-earth ions. The heat-capacity results also revealed the presence of a small fraction of Ce3+^{3+} in a magnetic 4f14f^1 state.Comment: 10 pages, 10 figure

    Superconductivity in the Correlated Pyrochlore Cd_2Re_2O_7

    Full text link
    We report the observation of superconductivity in high-quality Cd2_2Re2_2O7_7 single crystals with room-temperature pyrochlore structure. Resistivity and ac susceptibility measurements establish an onset transition temperature Tconset_c^{onset} = 1.47 K with transition width Δ\DeltaTc_c = 0.25 K. In applied magnetic field, the resistive transition shows a type-II character, with an approximately linear temperature-dependence of the upper critical field Hc2_{c2}. The bulk nature of the superconductivity is confirmed by the specific heat jump with Δ\DeltaC = 37.9 mJ/mol-K. Using the γ\gamma value extracted from normal-state specific heat data, we obtain Δ\DeltaC/γ\gammaTc_c = 1.29, close to the weak coupling BCS value. In the normal state, a negative Hall coefficient below 100 K suggests electron-like conduction in this material. The resistivity exhibits a quadratic T-dependence between 2 and 60 K, i.e., ρ=ρ0\rho =\rho_0+AT2^2, indicative of Fermi-liquid behavior. The values of the Kadowaki-Woods ratio A/γ2\gamma^2 and the Wilson ratio are comparable to that for strongly correlated materials.Comment: 4 pages, 5 figure

    Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K ß emission spectroscopy

    Get PDF
    Mn K ß x-ray emission spectra provide a direct method to probe the effective spin state and charge density on the Mn atom and is used in an experimental study of a class of Mn oxides. Specifically, the Mn K ß line positions and detailed spectral shapes depend on the oxidation and the spin state of the Mn sites as well as the degree of d covalency/itinerancy. Theoretical calculations including atomic charge and multiplet effects, as well as crystal-field splittings and covalency effects, are used as a guide to the experimental results. Direct comparison of the ionic system MnF2 and the covalent system MnO reveals significant changes due to the degree of covalency of Mn within atomic-type Mn K ß simulations. Moreover, comparisons of measurement with calculations support the assumed high spin state of Mn in all of the systems studied. The detailed shape and energy shift of the spectra for the perovskite compounds, LaMnO3 and CaMnO3, are, respectively, found to be very similar to the covalent Mn^(3+)-Mn2O3 and Mn^(4+)-MnO2 compounds thereby supporting the identical Mn-state assignments. Comparison to the theoretical modeling emphasizes the strong covalency in these materials. Detailed Mn K b x-ray emission results on the La1_xCaxMnO3 system can be well fit by linear superpositions of the end member spectra, consistent with a mixed-valent character for the intermediate compositions. However, an arrested Mn-valence response to the doping in the x<0.3 range is found. No evidence for Mn^2+ is observed at any x values seemingly ruling out proposals regarding Mn^3+ disproportionation

    Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles

    Full text link
    Structural, vibrational, and lattice dielectric properties of CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local spin-density approximation, and the results are compared with those computed previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many calculated quantities largely unaltered, although significant differences do emerge in zone-center optical phonon frequencies and mode effective charges. The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in excellent agreement with experiment, and the computed lattice contribution to the intrinsic static dielectric constant (~60) also agrees exceptionally well with a recent optical absorption experiment. These results provide further support for a picture in which the lattice dielectric response is essentially conventional, suggesting an extrinsic origin for the anomalous low-frequency dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm

    The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum

    Full text link
    The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the possibility of detecting the ISW through cross-correlations between the CMBR anisotropies and redshifted 21-cm observations. Assuming that the HI traces the dark matter, we find that the ISW-HI cross-correlation angular power spectrum at an angular multipole l is proportional to the dark matter power spectrum evaluated at the comoving wave number l/r, where r is the comoving distance to the redshift from which the HI signal originated. The amplitude of the cross-correlation signal depends on parameters related to the HI distribution and the growth of cosmological perturbations. However the cross-correlation is extremely weak as compared to the CMBR anisotropies and the predicted HI signal. As a consequence the cross-correlation signal is smaller than the cosmic variance, and a statistically significant detection is not very likely.Comment: 13 pages, 4 eps figures, submitte

    Optical properties of pyrochlore oxide Pb2Ru2O7δPb_{2}Ru_{2}O_{7-{\delta}}

    Full text link
    We present optical conductivity spectra for Pb2Ru2O7δPb_{2}Ru_{2}O_{7-{\delta}} single crystal at different temperatures. Among reported pyrochlore ruthenates, this compound exhibits metallic behavior in a wide temperature range and has the least resistivity. At low frequencies, the optical spectra show typical Drude responses, but with a knee feature around 1000 \cm. Above 20000 \cm, a broad absorption feature is observed. Our analysis suggests that the low frequency responses can be understood from two Drude components arising from the partially filled Ru t2gt_{2g} bands with different plasma frequencies and scattering rates. The high frequency broad absorption may be contributed by two interband transitions: from occupied Ru t2gt_{2g} states to empty ege_{g} bands and from the fully filled O 2p bands to unoccupied Ru t2gt_{2g} states.Comment: 4 pages, 6 figure

    Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    Get PDF
    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T, showing a minor but significant dependence of the dielectric constant on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure
    corecore