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ABSTRACT

Background: Body mass index can be used to group individuals in terms of their height and weight 

as obese.  However, such a distinction fails to account for the variation within this group across other 

factors such as health, demographic and behavioural characteristics.  The study aims to examine the 

existence of subgroups of obese individuals.

Methods: Data were taken from the Yorkshire Health Study (2010-2012) including information on 

demographic, health and behavioural characteristics.  Individuals with a body mass index of greater 

than or equal to 30 were included.  A two-step cluster analysis was used to define groups of 

individuals who shared common characteristics. 

Results: The cluster analysis found six distinct groups of individuals whose BMI was greater than or 

equal to 30.  These subgroups were: heavy drinking males, young healthy females; the affluent and 

healthy elderly; the physically sick but happy elderly; the unhappy and anxious middle aged, and a 

cluster with the poorest health. 

Conclusion:  It is important to account for the important heterogeneity within individuals who are 

obese.  Interventions introduced by clinicians and policy makers should not target obese individuals as 

a whole, but tailor strategies depending upon the subgroups that individuals belong to. 
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INTRODUCTION

Individuals with a body mass index (BMI) of greater than or equal to 30 are classified as obese.  

However, this classification assumes homogeneity within the group.  BMI is a classification of weight 

and height, not of people, who are only similar in terms of their BMI category (1).  Using a single 

classification for obesity will fail to recognise the variation between the individuals who are obese (2).  

For example, there has been debate about the existence of a metabolically healthy and fit set of obese 

individuals, contrary to the traditional understanding of the impact of obesity on health (3).  Failing to 

acknowledge the population-level heterogeneity amongst those classified as obese may restrict the 

effectiveness of interventions or treatments offered by clinicians, since approaches may need tailoring 

depending upon the health practices associated with individuals involved. 

There has been relatively little consideration of the population-level heterogeneity of those classified 

as obese.  There is some evidence that obesity-related behaviours including physical activities, 

diet/nutrition, lifestyle and sedentary behaviours cluster together amongst adolescents across all BMI 

categories (4 10).  For example, Ogden et al. (11) used a cluster analysis to identify subgroups of 

individuals who were successful in maintaining weight loss.  Analysis showed that individuals 

differed in their strategies and outcomes, indicating that weight loss interventions require tailoring 

towards individuals to be most effective.  Such an approach may be useful for thinking about obesity, 

allowing our understanding to move beyond a single classification of individuals as just obese.

Obesity has been shown to be associated with a variety of demographic factors, for example age (12), 

gender (12,13) and deprivation (14,15).  There are behavioural differences such as reduced physical 

activity (7) and poorer diet (9).  Obesity is associated with increased risk of adverse health outcomes 

including diabetes, cardiovascular diseases, stroke and osteoarthritis (16 18).  Such research tends to 

consider obesity as a single discrete factor, analysing its relationship to a single outcome variable 

treated in isolation to the other factors.  This ignores how these demographic, health and behavioural 

factors are inter-related amongst (and between) certain groups of individuals (7).  Exploring the 

heterogeneity of obese individuals will help to identify population subgroups that can help clinicians 

and policy makers explore the need for differing strategies/interventions in helping individuals lose 

weight. 

  



METHODOLOGY 

Data 

Data were taken from the first wave of the Yorkshire Health Study (YHS) (2010-2012).  The YHS is a 

longitudinal observational study that collects information on the health and heath needs of individuals 

in the Yorkshire region of England (the first wave only collected data for residents in South 

Yorkshire) (19,20).  The focus of the YHS is on weight, weight management and chronic health 

conditions.  Data were collected through recruiting General Practitioners surgeries (43 accepted; 50% 

acceptance) and sending out questionnaires to all patients aged 16-85 (achieving a response rate of 

15.9%).  Data were self-reported.  The first wave of the YHS collected data on 27 806 individuals, of 

which 4 144 were classified as having a BMI greater than or equal to 30. 

Demographic variables included were age, sex, ethnicity and socioeconomic deprivation due to their 

importance in previous research (12 14).  Ethnicity was reported as a binary variable for whether an 

- was determined using the area individuals lived 

presenting a detailed understanding of the multiple determinants of deprivation (21).   

Health-related variables included were whether an individual reported the following chronic 

conditions: fatigue, pain, insomnia, anxiety, depression, diabetes, breathing problems, high blood 

pressure, heart disease, osteoarthritis, stroke or cancer.  The EuroQoL EQ5D was included as a 

measure an -related quality of life (22).  Well-being was captured through asking 

individuals how satisfied they were of their life on a scale of zero (completely dissatisfied) to 10 

(completely satisfied). 

Variables related to behavioural characteristics included were: smoking status (binary variable for 

whether individuals smoked or not), the number of units of alcohol consumed in the previous week, 

whether an individual engaged in more than one hour of physical activity a week, and whether an 

individual walked for more than one hour in a week.  The low level cut-off points for physical activity 

and walking was chosen to capture sedentary characteristics.  Finally, we included a binary factor

relating to whether an individual engaged in active management of their own weight (including; use 

of slimming clubs, increasing exercise, controlling portion size, eating healthier, using over-the-

counter weight loss medication or using meal replacements). 

Analysis 

Cluster analysis was used to identify subgroups within the data.  The method groups together 

individuals based upon similarity across the set of characteristics defined above.  The analysis is 



exploratory and hypothesis generating (23,24).  Although it cannot identify causation, the results are

often used to drive future research (4). 

As the data included both binary and continuous variables a two-step cluster analysis method was

used (7,25).  The method operates through firstly scanning the data in a pre-classificatory stage and 

identifying  features (data points that share similar values 

across a range of variables) (25).  An algorithm similar to an agglomerative hierarchical clustering 

method is then used to classify the data (25). The log-likelihood is used as a distance measure since it 

normalises distance between different data types (25).  Continuous variables are also standardised

using z-scores to allow for greater comparability between the different scales (23).  The analysis was 

conducted using SPSS (version 21). 

There is no well-defined method for determining the optimal number of clusters (23,26). The number 

of clusters needs to be large enough to capture the important features in the data, but not too large that 

interpretation becomes difficult (23,24).  Chiu et al. (22) recommend 

Information Criterion (BIC) to inform the decision on the number of clusters that best represents the 

underlying structure of the data, as it has been shown to be useful (27). Change in BIC was plotted 

against the number of clusters to identify  that would demonstrate when 

subsequent solutions added less detail to the results (23).  

Interpretation of the results will be described through calculating the mean values of the variables for 

each cluster (with clusters labelled accordingly).  The coefficient of variation was also calculated to 

present a normalised measure of the variation in variables to help assess their contribution to cluster 

formation. 

To test the stability of the clusters, a replication analysis was conducted to assess how robust the 

(28) split sample 

method was used.  The procedure randomly divides the sample in half and performs the cluster 

analysis using the same rules and parameters from the main cluster analysis on each sample.  The 

results from one of the samples is then taken and applied to the other sample, using the clusters 

derived from the first sample to classify the data in the second sample.  The cluster centres for the two 

solutions for the second sample 

the agreement between their equivalent clusters.   

  



RESULTS 

Table 1 presents the demographic characteristics of the sample of individuals defined as obese using 

BMI (deprivation is reported in national quintiles).  Mean age of the sample was 56 (s.d. = 15). Mean 

BMI was 34 (s.d. = 4). 57.6% of the sample were female, 95.2% were White and individuals were 

most commonly found in more deprived areas. The obese sample contained a higher proportion of 

older people, females and individuals from deprived areas than compared to the rest of the YHS

(which is broadly representative of South Yorkshire; (20)).

Change in BIC against number of clusters is shown in Figure 1.  There are two obvious kinks in the 

plot: one at a three cluster solution and the other at a six cluster solution.  Although the three cluster 

solution leads to a distinct change in the gradient of the slope, the BIC continues to decline 

considerably until the six cluster solution.  This would suggest that a six cluster solution offers greater 

discriminatory power by capturing further variation in the data that would be missed out if the broader 

three cluster solution was used.  A six cluster solution was chosen and Table 2 presents the mean 

characteristics of each cluster from this solution. 

ounger healthy females

most positive health characteristics of all the clusters and also engaged in some healthy behaviours.  

Heavy drinking males

alcohol consumption.  This group were also less likely to be managing their weight, although they did 

report above average levels of physical exercise and walking.   

The  were primarily female.  They have poor mental health, 

with a low EQ5D and high values for insomnia, anxiety, depression and fatigue.  Their sense of 

wellbeing is relatively low.  However, this group does engage in healthy physical activity and in

weight management, and has the lowest alcohol consumption. 

The final three clusters capture different patterns amongst older people ffluent healthy elderly

is the least deprived cluster.  They have positive health characteristics (although have above average 

alcohol consumption).  The individuals in this cluster include a large proportion with high blood 

pressure and this may partially explain how the cluster was formed, although the high value may be 

related to their age.  Next there are the , a group that has a higher 

prevalence of chronic health conditions (including osteoarthritis, diabetes and high blood pressure)

but who also exhibit low levels of anxiety and depression.  Finally there are those with the 

.  This group is the most deprived, has the worst health (highest prevalence of most chronic 

health conditions) and tends not to engage in healthy behaviours.  Individuals reported high levels of



The coefficient of variation presented information regarding the dispersion of variables.  Variables 

with greater variation will be more important in cluster formation, as they allow for higher 

discrimination between clusters.  Values were highest amongst the health-related variables (especially 

stroke, anxiety, depression), suggesting that they were most important in cluster formation.  Although 

mean alcohol intake contained a low value, this is because the variable only contains high values for 

one cluster, with the other clusters containing similar values. 

(28) split sample method 

(p<0.001), suggesting moderate agreement (29).  The cases that altered were mostly found on the 

boundaries of each cluster and hence any differences were due to these cases moving to clusters of 

similar characteristics (i.e. knife edge issues; (23,24)).  The clusters also remained consistent if the 

morbidly obese were removed from the sample (i.e. leaving only the obese (BMI = 30 to 40, n=3757); 

kappa coefficient against the original solution was 0.56, p<0.001).  A cluster analysis of just the 

morbidly obese (BMI = 40+, n=387) did not produce broadly similar clusters. We also repeated the 

analysis for normal and overweight BMI categories. The clusters we found in the overweight group 

were similar to those found in the obese group, however this similarity was not seen in the analysis of 

the normal BMI group. 

  



DISCUSSION 

Main findings 

The analysis presented in this study has identified six types of obese individuals: heavy drinking 

males, younger healthy females; affluent healthy elderly; the physically sick but happy elderly;

unhappy anxious middle aged, and a cluster with the poorest health.  Health conditions (especially 

stroke, anxiety and depression) displayed the greatest variation in mean values between clusters 

suggesting that they were important in differentiating between types of obese individuals.  Testing 

suggested that the clusters were fairly stable. 

What is already known on this topic 

Although there has been sustained criticism of BMI as a measure of body fat and obesity (30,31), 

BMI continues to be an important measure for reporting obesity levels within a population (18).  

There has been less critique surrounding BMI as a classificatory tool.  Our paper helps to drive debate 

around the application of BMI, refining the measure to improve the detail it can offer as tool for 

grouping individuals. 

What this study adds 

The heterogeneity of obese individuals has important policy and clinical relevance.  Obesity-related 

interventions often target obese people in general, rather than any particular population subgroup 

(except perhaps relative to age and/or gender) (4,10).  A focus on subgroups of individuals may allow

a much more efficient targeting of scarce health care and health promotion resources.  An example 

might be the targeting of messages about the role of alcohol in weight management to young males as 

may respond to different 

messages, and may require different interventions, 

 who appear to be those with the most significant clinical need. 

Although it is clear that the individuals in the study would benefit from weight loss, an important 

implication from the results is that weight loss may not be the primary clinical focus.  For example, 

may be less of an issue compared to the chronic health 

issues associated with the cluster.  This is ger healthy 

be a priority.  Clinical prioritisation is 

key here and the cluster analysis highlights this issue when dealing with obese patients (where weight 

loss itself might be more effectively considered a secondary outcome). 



Interventions may need to be targeted to the cluster that patients correspond, to help patients lose 

weight or to effectively tailor their design an 

intervention involving increasing exercise may need to be mixed with psycho-social counselling, 

and much more modest goals may be needed.  It is important for clinicians and policy makers to 

recognise the different types of obese individuals they will encounter and moving beyond just using 

BMI alone will be important for successful treatment (32).   

Limitations of this study 

BMI is used to identify individuals who are obese for the analysis.  BMI may not always accurately 

classify individuals as obese as it does not directly measure body fat.  Although BMI is easy to 

measure, there is conflicting evidence surrounding how useful BMI is as a measure of obesity in the 

general population.  Shah & Braverman (24) found that BMI underestimated prevalence of obesity 

compared to body fat, however Gallagher and colleagues (25) have shown BMI to be correlated to 

most other measures of body fat. Green (18) also demonstrated that BMI was a useful measure 

compared to waist circumference for estimating a variety of health risks. Future research should 

explore whether the clusters exist when using other measures of obesity to explore their validity. 

The data collected in the YHS are based on self-reported information and are therefore subject to a 

range of different biases. Self-reported BMI has been shown to be downwardly biased (30).  The 

variables used to classify individuals may also be affected by bias, for example diabetes has been 

shown to be under-reported through self-reported methods (33). 

The number of clusters chosen is somewhat arbitrary, and will affect the results that are reported 

(23,24).  Whilst the decision for the number of clusters selected was based upon the BIC (a measure 

previously shown to be effective at detecting the correct number of clusters), the choice is still 

somewhat subjective (25,27).  Exploring the results for a varying number of clusters in the data set 

showed that the patterns captured in the six cluster solution remained broadly consistent (with clusters 

either combined or split up depending on the number of clusters), suggesting that a six cluster solution 

was appropriate.  Testing also indicated that the solution was fairly stable. 

Cluster analysis is a data driven method and hence despite the stability of the clusters within the 

study, the results may not be generalizable to other obese populations.  However, the methodology is 

designed to generate hypotheses that can drive future research (23,24).  It would be useful to explore 

the existence of the clusters in other data sets to validate how useful the groupings are both nationally 

and internationally. It is also worth exploring how similar the obese clusters are to other population 

subgroups to examine whether they are just specific the obese individuals.  
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TABLES

Table 1: Description of the demographic factors (%) of individuals whose body mass index was 

greater than or equal to 30. 

Variable 
Gender: 
    Female 57.6 
    Male 42.4 
Age: 

4.9 
    25-34 7.7 
    35-44 11.6 
    45-54 16.8 
    55-64 23.7 
    65-74 23.3 

11.9 
Deprivation Quintile: 
  1 (Least deprived) 8.9 
  2 19.5 
  3 16.1 
  4 20.9 
  5 (Most deprived) 34.6 
Ethnicity: 
  White 95.2 
  Non-white 4.8 

  



Table 2: The mean values of variables split by clusters. 

Variable 

Clusters 

All 
individuals 

Coefficient 
of variation 

Physically 
sick but 
happy 
elderly 

Affluent 
healthy 
elderly 

Younger 
healthy 
females 

Unhappy 
anxious 
middle 
aged 

Heavy 
drinking 

males 

Poorest 
health 

Sample size 794 555 1021 577 887 310 4144 
Mean Body Mass Index 34.41 33.68 34.06 34.32 32.98 36.49 34.07 0.03 

Mean age 67 62 49 52 52 62 56 0.13 
Proportion male 0.48 0.53 0.00 0.27 1.00 0.56 0.46 0.72 

Proportion non white 0.01 0.03 0.03 0.03 0.03 0.02 0.03 0.28 
Mean deprivation score 27.07 23.78 24.38 27.48 24.37 33.94 25.96 0.15 
Mean life satisfaction 

score 7.45 7.99 7.55 5.62 7.6 4.76 7.12 0.18 

Mean EQ5D 0.60 0.87 0.88 0.59 0.87 0.21 0.73 0.36 
Proportion with fatigue 0.40 0.03 0.02 0.70 0.04 0.82 0.25 1.44 

Proportion with pain 0.76 0.03 0.07 0.58 0.09 0.91 0.33 1.18 
Proportion with insomnia 0.08 0.01 0.00 0.32 0.01 0.36 0.09 1.84 
Proportion with anxiety 0.03 0.03 0.01 0.56 0.01 0.58 0.13 2.19 

Proportion with depression 0.02 0.03 0.02 0.46 0.01 0.69 0.13 2.28 
Proportion with diabetes 0.32 0.18 0.04 0.04 0.08 0.38 0.15 0.98 

Proportion with breathing 
problems 0.27 0.07 0.07 0.15 0.06 0.47 0.15 1.08 

Proportion with high blood 
pressure 0.62 0.99 0.00 0.15 0.02 0.70 0.33 1.25 

Proportion with heart 
disease 0.23 0.04 0.02 0.01 0.04 0.36 0.09 1.61 

Proportion with 
osteoarthritis 0.38 0.08 0.03 0.11 0.03 0.44 0.15 1.22 

Proportion with stroke 0.04 0.01 0.00 0.02 0.01 0.13 0.02 2.42 
Proportion with cancer 0.07 0.03 0.01 0.03 0.01 0.05 0.03 0.78 
Proportion who smoke 0.08 0.06 0.12 0.16 0.13 0.21 0.12 0.45 

Mean alcohol intake (units 
/week) 5.31 8.03 4.98 4.85 11.86 6.57 7.03 0.38 

Proportion who walk > 1 
hr / week 0.26 0.46 0.44 0.36 0.43 0.08 0.37 0.40 

Proportion who do 
physical Exercise > 1 hr / 

week 
0.31 0.49 0.51 0.40 0.48 0.12 0.42 0.36 

Proportion who actively 
manage their weight 0.87 0.89 0.93 0.96 0.79 0.73 0.87 0.10 

Note: The mean scores have been conditionally formatted for each variable to improve their visual interpretation (this is 
supplementary to the values in each cell).  
clusters i The rest of the values for the 
clusters are then shaded in proportion to their position in relation to this range (light to dark grey), so that lighter shades 
represent good health characteristics and darker shades poorer health characteristics. 
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FIGURE LEGENDS 

Figure 1: Change in the Bayesian Information Criterion (BIC) against number of clusters. 


