23 research outputs found

    Maser action in methanol transitions

    Full text link
    We report the detection with the ATCA of 6.7 GHz methanol emission towards OMC-1. The source has a size between 40'' and 90'', is located to the south-east of Ori-KL and may coincide in position with the 25 GHz masers. The source may be an example of an interesting case recently predicted in theory where the transitions of traditionally different methanol maser classes show maser activity simultaneously. In addition, results of recent search for methanol masers from the 25 and 104.3 GHz transitions are reported.Comment: To appear in the Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galactic Nuclei", Eds. Y.Hagiwara, W.A.Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwer; author list has been corrected, text is unchange

    Macro- and microscopic properties of nonaqueous proton conducting membranes based on PAN.

    No full text
    In this work we report the electrochemical and physical characterization of proton-conducting gels prepared by means of a swelling procedure proved successful for the synthesis of membranes of interest for lithium battery technology. Basically, this new approach considers the formation of a precursor membrane by the gelification of a selected polymer matrix, e.g., a poly (acrylonitrile), matrix using a suitable solvent. This membrane is then embedded in an acidic solution: by a phase inversion process, the gelling solvent leaves the polymer matrix to be replaced by the acid solution, to finally obtain a self-standing, proton-conducting membrane. Impedance spectroscopy analysis demonstrated the good conductivity of the materials, and infrared, Raman, and fuel-cell studies confirm that this conductivity is due to protonic transport

    Macro- and microscopic properties of nonaqueous proton conducting membranes based on PAN.

    No full text
    In this work we report the electrochemical and physical characterization of proton-conducting gels prepared by means of a swelling procedure proved successful for the synthesis of membranes of interest for lithium battery technology. Basically, this new approach considers the formation of a precursor membrane by the gelification of a selected polymer matrix, e.g., a poly (acrylonitrile), matrix using a suitable solvent. This membrane is then embedded in an acidic solution: by a phase inversion process, the gelling solvent leaves the polymer matrix to be replaced by the acid solution, to finally obtain a self-standing, proton-conducting membrane. Impedance spectroscopy analysis demonstrated the good conductivity of the materials, and infrared, Raman, and fuel-cell studies confirm that this conductivity is due to protonic transport

    Dispersive hydrodynamics: Preface

    No full text
    This paper was accepted for publication in the journal Physica D: Nonlinear Phenomena and the definitive published version is available at http://dx.doi.org/10.1016/j.physd.2016.07.002.This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G. B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop \Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context

    Packing and Molecular Conformation, and Their Relationship with LC Phase Behaviour

    No full text
    corecore