40 research outputs found

    Short Range Ordered Aluminum Foams

    Get PDF
    Ordering the bubbles of closed cell aluminum foams can contribute to decorative esthetics and create directional mechanical properties that disordered foams do not have. High porosity gt;80 aluminum foams prepared by the traditional static gas injection method usually have large and polyhedral cells, which do not form an ordered stacking. Aluminum foams with relatively uniform and small cells cell size amp; 8776;1.2 amp; 8201;mm have been recently obtained by gas injection through a nozzle rotating at high speed. Herein, the stacking of aluminum foams with different cell sizes and a monodisperse aqueous foam are characterized by X ray tomography and compared with an ideal face centered cubic FCC structure. The aluminum foam featuring the smallest cells has a concentrated distribution of cell coordination number with a peak of 12 and the first peaks of the radial distribution function are found to be consistent with those of the monodisperse aqueous foam and an ideal FCC structure. Furthermore, many aligned bubble chains with more than five bubbles are observed on cross sectional images. Therefore, aluminum foam can become short range ordered whenever the cell size is uniform enough and reduced to around 1.2 amp; 8201;mm. Methods for further improving the order of aluminum foam are discusse

    PhaseGAN a deep learning phase retrieval approach for unpaired datasets

    Get PDF
    Phase retrieval approaches based on deep learning DL provide a framework to obtain phase information from an intensity hologram or diffraction pattern in a robust manner and in real time. However, current DL architectures applied to the phase problem rely on i paired datasets, i. e., they are only applicable when a satisfactory solution of the phase problem has been found, and ii the fact that most of them ignore the physics of the imaging process. Here, we present PhaseGAN, a new DL approach based on Generative Adversarial Networks, which allows the use of unpaired datasets and includes the physics of image formation. The performance of our approach is enhanced by including the image formation physics and a novel Fourier loss function, providing phase reconstructions when conventional phase retrieval algorithms fail, such as ultra fast experiments. Thus, PhaseGAN offers the opportunity to address the phase problem in real time when no phase reconstructions but good simulations or data from other experiments are availabl

    Electronic transport in EuB6_6

    Get PDF
    EuB6_6 is a magnetic semiconductor in which defects introduce charge carriers into the conduction band with the Fermi energy varying with temperature and magnetic field. We present experimental and theoretical work on the electronic magnetotransport in single-crystalline EuB6_6. Magnetization, magnetoresistance and Hall effect data were recorded at temperatures between 2 and 300 K and in magnetic fields up to 5.5 T. The negative magnetoresistance is well reproduced by a model in which the spin disorder scattering is reduced by the applied magnetic field. The Hall effect can be separated into an ordinary and an anomalous part. At 20 K the latter accounts for half of the observed Hall voltage, and its importance decreases rapidly with increasing temperature. As for Gd and its compounds, where the rare-earth ion adopts the same Hund's rule ground state as Eu2+^{2+} in EuB6_{6}, the standard antisymmetric scattering mechanisms underestimate the sizesize of this contribution by several orders of magnitude, while reproducing its shapeshape almost perfectly. Well below the bulk ferromagnetic ordering at TCT_C = 12.5 K, a two-band model successfully describes the magnetotransport. Our description is consistent with published de Haas van Alphen, optical reflectivity, angular-resolved photoemission, and soft X-ray emission as well as absorption data, but requires a new interpretation for the gap feature deduced from the latter two experiments.Comment: 35 pages, 12 figures, submitted to PR

    Tomoscopy Time Resolved Tomography for Dynamic Processes in Materials

    Get PDF
    The structure and constitution of opaque materials can be studied with X ray imaging methods such as 3D tomography. To observe the dynamic evolution of their structure and the distribution of constituents, for example, during processing, heating, mechanical loading, etc., 3D imaging has to be fast enough. In this paper, the recent developments of time resolved X ray tomography that have led to what one now calls tomoscopy are briefly reviewed A novel setup is presented and applied that pushes temporal resolution down to just 1 ms, that is, 1000 tomograms per second tps are acquired, while maintaining spatial resolutions of micrometers and running experiments for minutes without interruption. Applications recorded at different acquisition rates ranging from 50 to 1000 tps are presented. The authors observe and quantify the immiscible hypermonotectic reaction of AlBi10 in wt alloy and dendrite evolution in AlGe10 in wt casting alloy during fast solidification. The combustion process and the evolution of the constituents are analyzed in a burning sparkler. Finally, the authors follow the structure and density of two metal foams over a long period of time and derive details of bubble formation and bubble ageing including quantitative analyses of bubble parameters with millisecond temporal resolutio

    Energy dependence of commensurate neutron scattering peak in doped two-leg ladder antiferromagnet Sr_{14-x}Ca_{x}Cu_{24}O_{41}

    Get PDF
    The dynamical spin response of doped two-leg ladder antiferromagnets is investigated based on the fermion-spin approach. Our calculations clearly demonstrate a crossover from the incommensurate antiferromagnetism in the weak interchain coupling regime to commensurate spin fluctuation in the strong interchain coupling regime. In particular, the nuclear spin-lattice relaxation rate extracted from the commensurate spin fluctuation decreases exponentially with decreasing temperatures. The behaviors of the spin dynamics in the strong coupling regime are quantitatively close to the experimental results of Sr_{14-x}Ca_{x}Cu_{24}O_{41}.Comment: 13 pages, Revtex, four figures are include

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data

    Get PDF
    We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25–2000Hz2000\,\mathrm{Hz}, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175Hz175\,\mathrm{Hz}, with comparable limits set across the most sensitive frequency range from 100 to 200Hz200\,\mathrm{Hz}. At this frequency, the 95% upper limit on the signal amplitude h 0 is 2.3×10252.3\times {10}^{-25} marginalized over the unknown inclination angle of the neutron star's spin, and 8.0×10268.0\times {10}^{-26} assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3–4 stronger than those set by other analyses of the same data, and a factor of ~7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of 100Hz100\,\mathrm{Hz}, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Aluminium foam with sub mm sized cells produced using a rotating gas injector

    No full text
    Closed cell solid aluminium alloy foams should ideally contain small and equally sized cells for the sake of better and more predictable mechanical properties, but real foams generated by injection of gas into melts usually exhibit a broad distribution of cell sizes and shapes. Here we investigate how gas bubbles in an aluminium alloy melt containing stabilizing SiC particles can be created in a controlled way by letting the injector move on a circular orbit through the melt at different velocities and dapting the gas flow. The structures of the resulting solidified foams are characterized by X ray tomography. We identify conditions that allow us to obtain near monodisperse foams with cell sizes below 1 mm and are able to reduce the content of SiC particles from the usual 20 vol to 8 vol
    corecore