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Abstract: Phase retrieval approaches based on deep learning (DL) provide a framework to
obtain phase information from an intensity hologram or diffraction pattern in a robust manner and
in real-time. However, current DL architectures applied to the phase problem rely on i) paired
datasets, i. e., they are only applicable when a satisfactory solution of the phase problem has been
found, and ii) the fact that most of them ignore the physics of the imaging process. Here, we
present PhaseGAN, a new DL approach based on Generative Adversarial Networks, which allows
the use of unpaired datasets and includes the physics of image formation. The performance of
our approach is enhanced by including the image formation physics and a novel Fourier loss
function, providing phase reconstructions when conventional phase retrieval algorithms fail, such
as ultra-fast experiments. Thus, PhaseGAN offers the opportunity to address the phase problem
in real-time when no phase reconstructions but good simulations or data from other experiments
are available.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase retrieval, i. e., reconstructing phase information from intensity measurements, is a common
problem in coherent imaging techniques such as holography [1], coherent diffraction imaging
[2], and ptychography [3,4]. As most detectors only record intensity information, the phase
information is lost, making its reconstruction an ill-defined problem [5,6]. Most common
quantitative solutions to the phase problem either rely on deterministic approaches or on an
iterative solution [7]. Examples of deterministic solutions to holography are transport of intensity
equations (TIE) [8] or based on Contrast Transfer Functions (CTFs) [9]. Such deterministic
approaches can only be applied if certain constraints are met. For example, TIE is valid only in
paraxial and short-propagation-distance conditions. Furthermore, complex objects can only be
reconstructed with TIE when assuming a spatially homogeneous material [10]. Similarly, CTF
only applies to weak scattering and weak absorption objects. Iterative approaches are not limited
by these constraints [11,12] and can address not only holography but also coherent diffraction
imaging and ptychography. These techniques retrieve the object by alternating between detector
and object space and iteratively applying constraints on both, as depicted in Fig. 1(a). This process
is computationally expensive, requiring several minutes to converge, precluding application to
real-time analysis. Furthermore, the convergence of such approach is not guaranteed.

Recently, DL has demonstrated potential to solve ill-posed imaging problems, such as
holography [13,14], magnetic resonance imaging [15], and phase retrieval [16–18]. DL offers
an accurate solution to the phase problem, which is computationally fast compared to iterative
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Fig. 1. Comparison between the schematic approaches of (a) conventional iterative
phase-retrieval, (b) CycleGAN, and (c) PhaseGAN.

approaches [13,17], and independent of physical approximations. DL methods need to be
trained before they are used. In supervised training, data is input to a differentiable method with
adjustable parameters, e. g., a Neural Network (NN). The NN is then tuned to produce the desired
output. In classic paired supervision applied to phase retrieval, for every input (intensity) such
training needs to know the precise output (phase). Paired supervision has two difficulties:

First, such approaches require recording large datasets of phase and intensity of exactly the
same sample. It is easy to think of conditions where this is not possible: i) Some instruments, like
X-ray free-electron laser (XFEL) [19–22] have limited accessibility, making it difficult to acquire
large paired datasets from such instruments. ii) Phase retrieval algorithms might not provide
good reconstructions or are not even applicable. Examples of such scenarios are diffraction
experiments where only simulations are available but not phase reconstructions [23,24] or Bragg
Coherent Diffraction imaging [25] experiments where obtaining good phase reconstructions have
proven a challenging task [26,27]. iii) Complementary imaging modalities, e. g., certain imaging
experiments might provide low-noise and high-spatial-resolution phase reconstructions while
another experiment provides high-noise detector images at a lower resolution of similar samples,
but not of the same exact sample. This is of particular importance when imaging radio-sensitive
samples with directly or indirectly-ionizing radiation, such as X-rays. This scenario requires
minimizing the deposited dose, i. e., deposited energy per unit of mass. Alternatively, this is a
typical problem when performing fast imaging experiments to track dynamics with a reduced
number of photons per exposure. iv) Sensing might alter or even destroy the sample, e. g., in
a diffraction-before-destruction imaging modality with high-intensity sources such as XFELs
[28,29]. In this scenario, rendering paired sensing with a different modality is impossible. We
argue how unpaired training, where all we need is random samples from the two different
experimental setups, but not from the same object, will overcome all these four (i–iv) limitations.

Second, even if paired data was available, the results are often unsatisfying when attempting
to solve an ill-posed problem, i. e., if one intensity reading does not map to one specific phase
solution [30] but to a distribution of possible explanations. Classic paired training is known to
average, i. e., spatially blur, all possible solutions if the solution is not unique [31]. Adversarial
training [32] can overcome this problem by augmenting the training by a discriminator, i. e.,
another NN, with the purpose to correctly classify results from the training, as well as true
samples of the data distribution, i. e., from-the-wild phase images, as either “real” or “fake”. The
training uses the information of what was objectionable so that the discriminator could detect a
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method’s results as fake, to improve the method itself. It also uses the information from the true
samples of the data distribution to become picky, i. e., good at saying what is “real” or “fake”.
For ill-posed problems such as phase reconstruction, this will push the solution away from the
average of all possible phase images to explain the input — which itself would not be a good
phase image, as it is blurry — to a specific solution, which also explains the input, but is not
blurry.

New DL adversarial schemes have shown the possibility of training on unpaired data sets;
that is, a set of images captured from one modality and another set made using a different
modality, but not necessarily of the same object. A state-of-the-art unpaired DL approach is
CycleGAN [33]. CycleGAN learns a pair of cycle consistent functions, which map from one
modality to the other such that their composition is the identity. This consistency constraint is
analogous to the constraint applied in iterative phase reconstruction algorithms [5,11], where
cyclic constraints are applied between the sample and detector space. Thus, approaches based on
CycleGAN offer a framework for phase reconstruction, which mimics the structure of iterative
approaches but without the limitation to paired datasets. For example, CycleGAN has been
recently applied to holographic reconstructions [34] and medical imaging techniques including
MRI [35], CT [36], and CT with super-resolution [37]. All these applications rely on the original
CycleGAN framework, which does not include the physics of the image formation, and can lead
to non-unique and non-robust solutions in the presence of noise [38].

Including physical knowledge into a neural network has been demonstrated to minimize
error bounds [39]. This idea has been exploited together with deep-image prior [40] to address
holographic reconstructions [41–43]. However, such approaches, similar to iterative approaches,
require seconds to minutes to converge and provide phase reconstructions for each hologram.
Thus, these approaches cannot be used to obtain real-time phase reconstructions [44] as required
when performing ultra-fast or time-resolved experiments.

In this paper, we demonstrate a DL approach, christened PhaseGAN, based on CycleGAN.
PhaseGAN includes the physics of the image formation as it cycles between the sample and the
detector domains. By including the physics of the image formation and other learning constraints,
PhaseGAN reconstructs the phase information at a level comparable to state-of-the-art paired
approaches but obtaining better and more robust results than CycleGAN. Compared to current
unsupervised DL approaches that include the physical model for phase reconstructions, PhaseGAN
uses prior training. Thus, it can be used in real-time applications, such as time-resolved or
ultra-fast imaging.

The remainder of this paper is structured as follows: First, we describe our approach’s
architecture and how the physics of the image formation is included. Second, we validate
PhaseGAN with synthetic data for in-line holographic (near-field) experiments. In this validation
step, we demonstrate the relevance of including the physical model by comparing the results with
CycleGAN. Furthermore, we demonstrate that our unpaired approach performs at the level of
state-of-the-art paired approaches. Third, we apply PhaseGAN to fast-imaging experimental data
where noisy readings of a MHz camera are reconstructed using low-noise phase reconstructions
recorded with a different setup and samples. Finally, we discuss the results and future applications
of PhaseGAN to experiments where phase reconstructions are not possible today.

2. PhaseGAN approach

This section describes the architecture of PhaseGAN and how it uses physical knowledge to
enhance the phase reconstructions. We then describe the training process and our loss function,
which includes terms that avoid typical phase-reconstruction artifacts such as missing frequencies
or the twin-imaging problem [1,45].

The architecture of PhaseGAN is based on CycleGAN [33]. CycleGAN uses two Generative
Adversarial Network (GAN)s, which allow the translation of one image from a domain A to a
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domain B and the inverse translation from B to A. Thus, the cycle consistency between two
domains can be adapted to the object and detector domains, allowing CycleGAN to perform phase
reconstructions by mimicking the structure of iterative phase-retrieval approaches, as shown
in Fig. 1(b). The main difference between iterative phase-retrieval approaches and CycleGAN
approaches is the inclusion of the propagator (H), which includes the physics of the image
formation between the object and the detector space. PhaseGAN combines both the iterative and
the CycleGAN approach by including two GANs in a cyclic way together with the physics of the
image formation via the propagator. The scheme of PhaseGAN is depicted in Fig. 1(c), where
each of the GANs is decomposed in their generator (G) and discriminator (D). The generators
used in PhaseGAN are U-Net [46]-like end-to-end fully convolutional neural networks. The
discriminators are PatchGAN discriminators [31,33]. GO is the phase-reconstruction generator,
which takes the measured intensities (one single channel input) and produces a two-channel
complex output, where the two channels can be either the real and imaginary part or the
phase and amplitude of the complex-object wave field (ψO). DO is the discriminator of the
phase reconstruction. The object wavefield ψO is then propagated using the non-learnable but
differentiable operator H to the detector plane (ψD = HψO), and the intensity in the detector
plane is computed (|ψD |

2). The propagator H is the near-field Fresnel propagator [47]. GD
completes the cycle and works as an auxiliary generator, mapping the propagated intensity |ψD |

2

to the measured detector intensity ID = GD |ψD |
2 = GD |HψO |

2 using a single channel for the
input and output. Due to the propagator H, GD does not need to learn the well-known physical
process; thus it only learns the experimental effects of the intensity measurements, e. g., the
point-spread function and flat-field artifacts. Although some of these effects can be described
and included in the physical model such as the point-spread function, other effects cannot be
included in a deterministic model, e.g., the shot noise due to the stochastic nature of the XFEL
radiation [48]. Therefore, GD learns all those experimental effects not included in the physical
model. Finally, the intensity discriminator DD is used to classify intensity measurements as “real”
or “fake”. For more details about the PhaseGAN architecture, see the Supplement 1.

Our goal is to learn two mappings simultaneously: i) detector images to complex object
wavefield GO : ID → ψO, and ii) propagated diffraction patterns to detector images GD : |ψD |

2 →

ID. This goal is achieved by optimizing

arg min
GO,GD

arg max
DO,DD

LGAN(GO, GD, DO, DD)+

αCyc LCyc(GO, GD)+

αFRCLFRC(GO, GD).
(1)

This objective is a combination of three terms: an adversarial term, a cycle consistency term,
and a Fourier Ring Correlation (FRC) term. The relative weight of the cycle consistency and
FRC losses with respect to the adversarial loss is parametrized by αCyc and αFRC, respectively.
The schematic of the learning process is depicted in Fig. 2.

The first term LGAN of Eq. (1) is the adversarial loss [32]

LGAN(GO, GD, DO, DD) =

EψO∼Ψ[log(DO(ψO))]+

EψO∼Ψ[log(1 − DD(GD |HψO |
2))]+

EID∼I[log(DD(ID))]+

EID∼I[log(1 − DO(GO(ID)))].

(2)

In Eq. (2), Ex∼X denotes the expectation of the distribution X, and Ψ and I are the phase and
intensity distributions, respectively.

The second term (LCyc) of Eq. (1) requires cycle consistency to confine generator outputs so
that it is not just creating random permutation of images following the same data distribution

https://doi.org/10.6084/m9.figshare.14686857
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Fig. 2. Learning process diagram. Our aim is to learn a mapping GO from the intensity
sensing regime (right) to a phase modality (left). We require this mapping GO to fulfill
two cyclic constraints: First (blue), when its phase result is being mapped back to the
intensity domain using a non-learned physical operator H and a learned correction operation
GD, the result should be similar (dotted line) to the intensity. Second (red), when the
phase is mapped to intensity and back, it should remain the same. Further, we train two
discriminators DD and DO to classify real and generated intensity and phase samples as
real or fake (green). Finally, we ask the Fourier transform, another fixed but differentiable
operator of both intensity and phase, to match the input after one cycle.

from the desired dataset. As shown in Fig. 2, regardless of where we start the loop we should
end up at the starting point, i. e., GO(GD |HψO |

2) = ψO and GD |H(GO(ID))|
2 = ID. This cycle

consistency loss can be expressed as:

LCyc(GO, GD) = EψO∼Ψ[∥GO(GD |HψO |
2) − ψO∥1]+

EID∼I [∥GD |H(GO(ID))|
2 − ID∥1].

(3)

The last term in Eq. (1), LFRC, calculates the FRC. FRC takes two images or complex waves
and measures the normalised cross-correlation in Fourier space over rings [49,50]. Fourier ring
correlation can help to avoid common frequency artifacts such as the twin-image problem [1,45]
or missing frequencies due to the physical propagation. The LFRC is defined as follows:

LFRC(GO, GD) = EψO∼Ψ [∥1 − FRC(GO(GD |HψO |
2),ψO)∥2]

+ EID∼I [∥1 − FRC(GD |H(GO(ID))|
2, ID)∥2],

(4)

where FRC is the Fourier ring correlation operator that calculates the FRC over all the Fourier
space rings.

3. Validation results

In this section, we perform phase-retrieval experiments to validate PhaseGAN. Furthermore, we
compare its performance to other state-of-the-art DL methods. This comparison is made with
synthetic data in the near-field regime.

To validate PhaseGAN and compare its performance to other DL methods, we generated
synthetic X-ray imaging experiments in the near-field regime using CelabA dataset [51]. The
synthetic training dataset consists of 10,000 complex objects and 10,000 synthetic detector images.
These sets are unpaired. However, paired solutions for the detector and object simulations are
available for validation purposes and training state-of-the-art paired approaches. The wavelength
used in these experiments is λ = 1 Å, and the pixel size in object space is constrained to 1 µm.
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The complex wavefront of the objects is given by their transmissivity. The transmissivity is
emulated by multiplying the CelabA face images with a random thickness (t), up to a maximum
(tmax) of 1 µm.

The complex wavefront after the object in the projection approximation is given by:

ψO(r) = ψi exp
(︁
jknt(r)

)︁
, (5)

where ψi is the illumination wavefront at the object plane, k = 2π/λ is the wavenumber, n is
the complex refractive index, r are the frame coordinates, and t(r) is the frame thickness map.
The refractive index of gold at 12.4 keV is used for our simulation. Then, this wavefront is
propagated to the detector (HψO) using the near-field propagator. The near-field detector has
an effective pixel-size of 1 µm (equals to the sample-simulated pixel size) and is assumed to be
10 cm away from the sample. We also include flat-field noise, i. e., variable ψi for each frame.
This flat-field noise is simulated with 15 elements of a basis extracted by Principal Component
Analysis (PCA) from MHz-imaging data coming from the European XFEL [52]. Examples of
the simulated holograms can be found in the Supplement 1. We assume that the detector has
photon counting capabilities; thus, the noise has Poissonian behaviour. The approximate number
of photons simulated is 6.6 · 107 per frame.

We compare the performance of PhaseGAN to four other DL methods. The first is a classic
supervised learning approach using paired datasets and an L2 loss, as used by most current
phase-retrieval approaches. The second uses the same architecture as before, but with additional
adversarial terms as in pix2pix [53,54]. The global loss function in this pix2pix method is
defined by:

L(GO, DO) = EψO∼Ψ[log(DO(ψO))]

+ EID∼I[log(1 − DO(GO(ID)))]

+ αMSEE(ψO,ID)∼(Ψ,I)∥GO(ID) − ψO∥2 .
(6)

The first two terms of Eq. (6) calculate the adversarial loss in a similar way as we defined
LGAN in Eq. (2). The weight of the L2 loss, αMSE, was set to 100. The third method is the
standard CycleGAN approach presented in Fig. 1(b). We use the same global loss function as
expressed in Eq. (1), but without including the physics of the image formation (H) as in Eqs. (2),
(3), and (4). For the training of CycleGAN, we set αCyc = 10 and αFRC = 0. Last, we also report
the results of PhaseGAN trained with αFRC = 0, which is denoted by PhaseGAN∗. Compared to
PhaseGAN, PhaseGAN∗ neglects the LFRC term in the optimization process. We set αCyc = 10
for the training of both PhaseGAN and PhaseGAN∗. For PhaseGAN training, we set αFRC = 5.
For all experiments, we use the same phase-retrieval network GO and the same training dataset.
The dataset was paired for the training of the first two methods but unpaired for the others. The
ADAM optimizer [55] with a mini-batch size of 40 was used throughout the training. The
generator learning rates were set to be 0.0002 for all five methods. For pix2pix, CycleGAN,
PhaseGAN, and PhaseGAN∗, the discriminator learning rates were set to be 0.0001. We
decayed all learning rates by 10 every 30 epochs and stopped training after 100 epochs.

The phase-retrieved results are quantified by using L2 norm, Dissimilarity Structure Similarity
Index Metric (DSSIM) [56], and Fourier Ring Correlation Metric (FRCM). FRCM calculates
the mean square of the difference between the Fourier ring correlation and unity over all spatial
frequencies. Thus, smaller FRCM values imply a higher similarity between two images in the
spectral or frequency domain. Please note that such metrics are only partially able to capture
the ability of a GAN to produce data distribution samples [57]. It must also be considered that
while these metrics assume the reference solution to be available, it is —for our method and
CycleGAN— only used to compute the metric, never in training. For qualitative assessment, a
reader is referred to Tbl. 1. Table 1 depicts the phase and amplitude of two zoom-in areas from
the validation dataset and the corresponding reconstructions. Image patches shown in the same

https://doi.org/10.6084/m9.figshare.14686857
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column were plotted with the same color scale. In Tbl. 1, we also report, for each DL method, the
logarithmic frequency distribution, the average value (µ), and the standard deviation (σ) for the
aforementioned validation metrics over 1000 validation images. Histograms in the same column
were plotted using the same scale. More information about the statistical distribution of the
metric values and line profiles through different validation images can be found in the Supplement
1. Another validation with experimental data for the unpaired approaches with well-known
objects is also presented in the Supplement 1. The results there presented are consistent with the
synthetic validation here presented. All the results presented here are discussed in section 5..

Table 1. Comparison of different methods (rows) applied to the same input according to different
metrics (columns).

4. Experimental results

In this section, we applied PhaseGAN to experimental data recorded at the Advanced Photon
Source (APS), where unpaired data of metallic foams was recorded with two different detectors
at independent sensing experiments.
PhaseGAN offers the opportunity to obtain phase information when phase reconstructions

are not possible. To demonstrate this, we performed time-resolved X-ray imaging experiments
of the cell-wall rupture of metallic foams at the Advanced Photon Source (APS) [58]. The
coalescence of two bubbles caused by the cell-wall rupture is a crucial process, which determines
the final structure of a metallic foam [59]. This process can happen within microseconds; thus,
MHz microscopic techniques are required to explore it. For this reason, we performed ultra-fast
experiments with an X-ray imaging system based on a Photron FastcamSA-Z with 2 µm effective

https://doi.org/10.6084/m9.figshare.14686857
https://doi.org/10.6084/m9.figshare.14686857
https://doi.org/10.6084/m9.figshare.14686857
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pixel size. The Photron system acquires the cell-wall rupture movies at a frame rate of 210
kHz, which integrated over 31 pulses of APS. Although the images acquired by the Photron
camera used a few pulses, they had good contrast, which allows obtaining meaningful phase
reconstructions. Images acquired by the Photron system were interpolated to an effective pixel
size of 1.6 µm and filtered using 100 iterations of a total-variation denoising algorithm [60] with
denoising parameter λ = 1.5. Images obtained were phase-reconstructed using a TIE approach
for single-phase materials [10] assuming X-ray photons of 25.7 keV, δ/β = 103 and propagation
distance z = 5 mm. The reconstructed phase and attenuation for a frame of the Photron system
are shown in Fig. 3(a) and (b), respectively. In order to increase the temporal resolution and to be
able to use single pulses of APS, we used an X-ray MHz acquisition system based on a Shimadzu
HPV-X2 camera with an effective pixel size of 3.2 µm. This system was used to record movies
of dynamic phenomena in liquid metallic foams using single pulses provided by APS with a
repetition frequency of 6.5 MHz. An example of a frame recorded with this system is shown
in Fig. 3(c). However, the contrast and signal-to-noise ratio are not sufficient to perform phase
reconstructions with current approaches.

Fig. 3. Application to metallic foam. Phase (a) and attenuation (b) reconstructed using
TIE of a frame acquired with the Photron-based system. (c) Intensity measured with
the Shimadzu recording system using a single pulse. The length of the scale bar is 50
µm. (d,e) Reconstructed phase and amplitude images of (c) obtained by PhaseGAN. (f,g)
Corresponding phase and amplitude images of the same image retrieved by CycleGAN.

To overcome the impossibility of performing phase reconstructions using the frames recorded
by the Shimadzu system, we used PhaseGAN. The dataset for PhaseGAN training consists
of 10,000 Photron frames and 10,000 Shimadzu frames, with frame sizes of 480 × 200 and
128 × 128 pixels, respectively. Due to the different pixel sizes in the two imaging systems,
the two sets of images were cropped to 200 × 200 and 100 × 100 before feeding them into
the NN. This was done to match the field-of-view in the two different imaging domains. We
performed data augmentation by applying random rotations and flips to the randomly cropped
training images to take full advantage of PhaseGAN’s capabilities. As is commonly used in
supervised learning, data augmentation is also indispensable in unsupervised approaches for
the neural network to learn the desired robustness properties [61], especially when only limited
training examples are available. In our case, the holograms were captured by kHz to MHz
camera systems, making detector frames very similar to each other. PhaseGAN reconstructions
without data augmentation will not learn the desired mappings from one domain to the other
but only remember the common features in each frame. The cropped Photron and Shimadzu
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frames were subsequently padded during the training to 256 × 256 and 128 × 128, respectively.
We slightly modified the network architecture for the training of metallic foams, where an extra
step of transposed convolution was added to the expanding step in GO to double the size of
the output images due to the half-pixel size of the Photron detector in respect of the Shimadzu
one. Conversely, the last transposed convolutional layer of the GD was replaced by a normal
convolutional layer to accommodate the double-pixel size of the Shimadzu detector with respect
to the Photron detector. We set αCyc = 150 and αFRC = 10. The ADAM optimizer with the same
learning rates used for the synthetic data and a mini-batch size of 40 was adopted for the metallic
foam training. The training was stopped after 100 epochs. The PhaseGAN phase and attenuation
outputs for the Shimadzu frame depicted in Fig. 3(c) are shown in Fig. 3(d) and (e), respectively.
The CycleGAN reconstructions of the same image using the same training parameters are shown
in Fig. 3(f) and (g). A complete movie of the cell-wall rupture of a metallic foam (FORMGRIP
alloy [62]) and its phase and attenuation reconstruction using PhaseGAN are provided in the
supplemental Visualization 1, Visualization 2, and Visualization 3. It is noticeable from the
movie clip that the coalescence of the two bubbles was finished within 10 µs. In total, 24.4 ms
were consumed to reconstruct the 61 frames of the movie, i. e., PhaseGAN reconstructions took
0.4 ms per frame. Thus, PhaseGAN offers an opportunity for real-time analysis.

5. Discussion

We have presented PhaseGAN, a novel DL phase-retrieval approach. The cyclic structure of
PhaseGAN allows to include the physics of image formation in the learning loop, which further
enhances the capabilities of unpaired DL approaches, such as CycleGAN (see Tbl. 1). Although
we did not include typical constraints used in iterative phase-retrieval approaches, such as support,
histogram constraints, and sample symmetries, PhaseGAN performs at the level of state-of-the-art
DL phase-reconstruction approaches. However, PhaseGAN’s cyclic approach could be adapted to
include such constraints to enhance its capabilities further. Another key ingredient of PhaseGAN
is the inclusion of a FRC loss term, which penalizes common phase-reconstruction artifacts
easy to filter in the Fourier domain, such as missing frequencies and the twin-imaging problem
[1,45], and reconstructed better the details of the object. This enhancement can be seen in Tbl. 1
and Supplement 1 when comparing the performance of PhaseGAN (with FRC loss term) and
PhaseGAN∗ (without FRC loss term).

We have demonstrated PhaseGAN’s capabilities by performing near-field holographic ex-
periments and compared the results to i) state-of-the-art paired approaches, ii) a GAN method
following the pix2pix approach, and iii) CycleGAN. The results of the experiments, using the
same training datasets, paired when needed, and phase-retrieval generator (GO), demonstrate the
unique capabilities of PhaseGAN. These results are reported in Table 1. From this table, we can
conclude that both paired approaches retrieve competitive phase reconstructions quantitatively
and qualitatively. CycleGAN, due to the challenge of training on unpaired datasets, clearly
performs worse than paired approaches. Without the inclusion of the physical model, CycleGAN
can fail to distinguish the difference between phase and amplitude images and flips the order of
the two channels, which increases the complexity of the learning process. PhaseGAN, although
unpaired as well, retrieves results at the level of paired-training approaches and outperforms
CycleGAN.

We have applied PhaseGAN to time-resolved X-ray imaging experiments using single pulses
of a storage ring to study the cell-wall rupture of metallic foams. In this imaging modality,
noisy images with low contrast and low resolution are recorded due to the limited number of
photons per pulse. This acquisition scheme records images that cannot be phase-reconstructed.
However, such an approach opens the possibility to record dynamics at MHz frame rates. In
parallel, we acquired a less noisy and better-contrast dataset that allowed phase reconstructions.
This dataset was obtained by integrating over 31 pulses and had about half of the pixel size of the

https://doi.org/10.6084/m9.figshare.14079908
https://doi.org/10.6084/m9.figshare.14079905
https://doi.org/10.6084/m9.figshare.14079902
https://doi.org/10.6084/m9.figshare.14686857
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time-resolved dataset. By training using these two different sensing experiments on different
realizations of metallic foam, we demonstrate the capability of PhaseGAN to produce phase
reconstructions, which are not possible using paired approaches.

6. Conclusions

To conclude, we have presented a novel cyclic DL approach for phase reconstruction, called
PhaseGAN. This approach includes the physics of image formation, a novel Fourier Ring
Correlation loss function, and it can be used on unpaired training datasets to enhance the
capabilities of current DL-based phase-retrieval approaches. We have demonstrated the unique
capabilities of PhaseGAN to address the phase problem when no phase reconstructions are
available, but good simulations of the object or data from other experiments are. This will
enable phase reconstructions by correlating two independent experiments on similar samples.
For example, it allows phase reconstructions and denoising with X-ray imaging from low-dose
in-vivo measurements by correlating them with higher-dose and lower-noise measurements
performed on ex-vivo samples of similar tissues and structures. As PhaseGAN uses prior training,
it has the potential to denoise and reconstruct the phase of time-resolved experiments to track
faster phenomena with a limited number of photons per frame. The capibility of real-time
phase-retrieval will be relevant for time-resolved experiments and ultra-fast imaging techniques.

The PhaseGAN code is available at GitHub.
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