13 research outputs found

    Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target

    Get PDF
    Blastic Plasmacytoid Dendritic Cell Neoplasm is a rare and aggressive hematological malignancy currently lacking an effective therapy. To possibly identify genetic alterations useful for a new treatment design, we analyzed by whole-exome sequencing fourteen Blastic Plasmacytoid Dendritic Cell Neoplasm patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program as the most significantly undermined (P<.0001). In particular, twenty-five epigenetic-modifiers were found mutated (e.g., ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and Pathology tissue-chromatin immunoprecipitation sequencing experiments; the patients displayed enrichment in gene-signatures regulated by methylation and modifiable by Decitabine administration, shared common H3K27-acetylated regions and featured a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical Blastic Plasmacytoid Dendritic Cell Neoplasm mouse model, established by the CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5'-Azacytidine and Decitabine in controlling the disease progression in vivo

    Inhibition of methyltransferase dot1l sensitizes to sorafenib treatment aml cells irrespective of mll-rearrangements: A novel therapeutic strategy for pediatric aml

    Get PDF
    Pediatric acute myeloid leukemia (AML) is an aggressive malignancy with poor prognosis for which there are few effective targeted approaches, despite the numerous genetic alterations, including MLL gene rearrangements (MLL-r). The histone methyltransferase DOT1L is involved in supporting the proliferation of MLL-r cells, for which a target inhibitor, Pinometostat, has been evaluated in a clinical trial recruiting pediatric MLL-r leukemic patients. However, modest clinical effects have been observed. Recent studies have reported that additional leukemia subtypes lacking MLL-r are sensitive to DOT1L inhibition. Here, we report that targeting DOT1L with Pinometostat sensitizes pediatric AML cells to further treatment with the multi-kinase inhibitor Sorafenib, irrespectively of MLL-r. DOT1L pharmacologic inhibition induces AML cell differentiation and modulates the expression of genes with relevant roles in cancer development. Such modifications in the transcriptional program increase the apoptosis and growth suppression of both AML cell lines and primary pediatric AML cells with diverse genotypes. Through ChIP-seq analysis, we identified the genes regulated by DOT1L irrespective of MLL-r, including the Sorafenib target BRAF, providing mechanistic insights into the drug combination activity. Our results highlight a novel therapeutic strategy for pediatric AML patients

    Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells

    No full text
    The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions

    Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified

    No full text
    Peripheral T-cell lymphoma not otherwise specified represents a diagnostic category comprising clinically, histologically, and molecularly heterogeneous neoplasms that are poorly understood. The genetic landscape of peripheral T-cell lymphoma not otherwise specified remains largely undefined, only a few sequencing studies having been conducted so far. In order to improve our understanding of the genetics of this neoplasm, we performed whole exome sequencing along with RNA-sequencing in a discovery set of 21 cases. According to whole exome sequencing results and mutations previously reported in other peripheral T-cell lymphomas, 137 genes were sequenced by a targeted deep approach in 71 tumor samples. In addition to epigenetic modifiers implicated in all subtypes of T-cell neoplasm (TET2, DNMT3A, KMT2D, KMT2C, SETD2), recurrent mutations of the FAT1 tumor suppressor gene were for the first time recorded in 39% of cases. Mutations of the tumor suppressor genes LATS1, STK3, ATM, TP53, and TP63 were also observed, although at a lower frequency. Patients with FAT1 mutations showed inferior overall survival compared to those with wild-type FAT1. Although peripheral T-cell lymphoma not otherwise specified remains a broad category also on molecular grounds, the present study highlights that FAT1 mutations occur in a significant proportion of cases, being provided with both pathogenetic and prognostic impact

    Use of IGK gene rearrangement analysis for clonality assessment of lymphoid malignancies: a single center experience.

    No full text
    Diagnosis of B-non Hodgkin lymphomas (NHLs) is based on clinical, morphological and immunohistochemi-cal features. However, in up to 10-15% of cases, analysis of immunoglobulin heavy (IGH) or light (IGK/IGL) chains genes is required to discriminate between malignant and reactive lymphoid proliferations. In this study, we evaluated the feasibility and efficiency of IGK analysis in the routine diagnostic of B-cell lymphoproliferative disorders (B-LD) when applied to formalin-fixed paraffin-embedded (FFPE) tissues. Clonality patterns were studied in 59 B-LD using the BIOMED-2 protocol for IGK assays, after failure of the IGH assay. PCR products were evaluated by both heterodu-plex and GeneScan analysis. IGK analysis was technically successful in all cases. Overall, it supported the histopa-thological suspicion in 52/59 cases (88%), the sensitivity and specificity being 83% and 80%, respectively. Further, positive and negative predictive values were 95% and 50%, respectively. Interestingly, among various lymphoma subtypes, marginal zone lymphoma and follicular lymphoma most frequently required IGK analysis. In conclusion, IGK study according to the BIOMED-2 protocol resulted feasible and extremely useful in supporting challenging diagnosis of B-LD even if applied on FFPE samples. Accordingly, when NHL is suspected, negative results at IGH analysis should not be considered as conclusive and further investigation of IGK is appropriat
    corecore