9 research outputs found
Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering
We report a neutron and Raman scattering study of a single-crystal of
La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic
neutron scattering measurements show the presence of two phases, corresponding
to the two edges of the first miscibility gap, all the way up to 300 K. An
additional oxygen redistribution, driven by electronic energies, is identified
at 250 K in Raman scattering (RS) experiments by the simultaneous onset of
two-phonon and two-magnon scattering, which are fingerprints of the insulating
phase. Elastic neutron scattering measurements show directly an
antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening
of the superconducting gap manifests itself as a redistribution of electronic
Raman scattering below the superconducting transition temperature, T_c = 24K. A
pronounced temperature-dependent suppression of the intensity of the (100)
magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to
a change of relative volume fraction of superconducting and antiferromagnetic
phases with decreasing temperature caused by a form of a superconducting
proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR
Prophossi:automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry
Motivation: Complex patterns of protein phosphorylation mediate many cellular processes. Tandem mass spectrometry (MS/MS) is a powerful tool for identifying these post-translational modifications. In high-throughput experiments, mass spectrometry database search engines, such as MASCOT provide a ranked list of peptide identifications based on hundreds of thousands of MS/MS spectra obtained in a mass spectrometry experiment. These search results are not in themselves sufficient for confident assignment of phosphorylation sites as identification of characteristic mass differences requires time-consuming manual assessment of the spectra by an experienced analyst. The time required for manual assessment has previously rendered high-throughput confident assignment of phosphorylation sites challenging