27 research outputs found
On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha,
with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay
as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously
differentiable in the strong sense and such that the matrix entries with
respect to the spectral decomposition of H obey the estimate
|V(t)_{m,n}|0,
p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be
arbitrarily small provided p is sufficiently large and \epsilon is small
enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the
diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where
\sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the
Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was
discussed earlier in the literature by Howland
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
Author Correction: Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys (Scientific Reports, (2018), 8, 1, (8843), 10.1038/s41598-018-27048-2)
10.1038/s41598-019-43804-4Scientific Reports911589