11 research outputs found

    Sedimentological signatures of the sub-Amery Ice Shelf circulation

    No full text
    Two sediment cores collected from beneath the Amery Ice Shelf, East Antarctica describe the physical sedimentation patterns beneath an existing major embayed ice shelf. Core AM01b was collected from a site of basal freezing, contrasting with core AM02, collected from a site of basal melting. Both cores comprise Holocene siliceous muddy ooze (SMO), however, AM01b also recovered interbedded siliciclastic mud, sand and gravel with inclined bedding in its lower 27 cm. This interval indicates an episode of variable but strong current activity before SMO sedimentation became dominant. 14C ages corrected for old surface ages are consistent with previous dating of marine sediments in Prydz Bay. However, the basal age of AM01b of 28250 ± 230 14C yr bp probably results from greater contamination by recycled organic matter. Lithology, 14C surface ages, absolute diatom abundance, and the diatom assemblage are used as indicators of sediment transport pathways beneath the ice shelf. The transport pathways suggested from these indicators do not correspond to previous models of the basal melt/freeze pattern. This indicates that the overturning baroclinic circulation beneath the Amery Ice Shelf (near-bed inflow-surface outflow) is a more important influence on basal melt/freeze and sediment distributions than the barotropic circulation that produces inflow in the east and outflow in the west of the ice front. Localized topographic (ice draft and bed elevation) variations are likely to play a dominant role in the resulting sub-ice shelf melt and sediment distribution

    Limnology of two Antarctic epishelf lakes and their potential to record periods of ice shelf loss

    No full text
    George VI Ice Shelf is the largest ice shelf on the western side of the Antarctic Peninsula and its northern margin marks the southern most latitudinal limit of recent ice shelf retreat. As part of a project to reconstruct the long-term (Holocene) history of George VI Ice Shelf we studied two epishelf lakes impounded by the ice shelf at Ablation Point, on the east coast of Alexander Island. These lakes, Moutonnée and Ablation, are stratified water bodies with a lower marine layer and an upper freshwater layer. To determine if their sediment records could be used to detect past changes in the presence or absence of the ice shelf it was necessary to describe their present-day limnology and sedimentology. We measured water column chemistry and sampled the water column and sediments of the lakes along vertical and horizontal transects. We analysed these samples for diatoms, stable isotopes (δ18O, δ2H, δ13CDIC, δ13Corg), geochemistry (TOC, TN, C/N ratios) and physical sedimentology (grain-size). This was supplemented by chemical and biological reference data from the catchments. Results showed that the water columns of both lakes are nutrient limited and deficient in phytoplankton. Benthic productivity is low and decreases with depth. Comparison of water column chemistry with an earlier survey shows a net increase in the thickness of the freshwater layer in Moutonnée Lake between 1973 and 2001, which could indicate that George VI Ice Shelf has thinned during this period. However, a similar trend was not observed in Ablation Lake (5 km to the north) and an alternative explanation is that the changes are a seasonal phenomena. Data from the surface sediment transects identified a number of proxies that respond to the present day stratification of the water column including diatom species composition, stable isotopes and geochemistry, particularly in Moutonnée Lake. Collectively these data have been used to develop a conceptual model for determining past ice shelf configuration in epishelf lakes. Specifically, periods of past ice shelf loss, and the removal of the ice dam, would see the present stratified epishelf lake replaced by a marine embayment. It is suggested that this change would leave a clear signature in the lake sediment record, notably the deposition of an exclusively marine biological assemblage, increased ice rafted debris and δ13Corg values that are indicative of marine derived organic matter

    Beam Test Performance Studies of CMS Phase-2 Outer Tracker Module Prototypes

    No full text
    International audienceA new tracking detector will be installed as part of the Phase-2 upgrade of the CMS detector for the high-luminosity LHC era. This tracking detector includes the Inner Tracker, equipped with silicon pixel sensor modules, and the Outer Tracker, consisting of modules with two parallel stacked silicon sensors. The Outer Tracker front-end ASICs will be able to correlate hits from charged particles in these two sensors to perform on-module discrimination of transverse momenta pTp_\mathrm{T}. The pTp_\mathrm{T} information is generated at a frequency of 40 MHz and will be used in the Level-1 trigger decision of CMS. Prototypes of the so-called 2S modules were tested at the Test Beam Facility at DESY Hamburg between 2019 and 2020. These modules use the final front-end ASIC, the CMS Binary Chip (CBC), and for the first time the Concentrator Integrated Circuit (CIC), optical readout and on-module power conversion. In total, seven modules were tested, one of which was assembled with sensors irradiated with protons. An important aspect was to show that it is possible to read out modules synchronously. A cluster hit efficiency of about 99.75% was achieved for all modules. The CBC pTp_\mathrm{T} discrimination mechanism has been verified to work together with the CIC and optical readout. The measured module performance meets the requirements for operation in the upgraded CMS tracking detector

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    No full text
    International audienceThe Short Strip ASIC (SSA) is one of the four front-endchips designed for the upgrade of the CMS Outer Tracker for the HighLuminosity LHC. Together with the Macro-Pixel ASIC (MPA) it willinstrument modules containing a strip and a macro-pixel sensorstacked on top of each other. The SSA provides both full readout ofthe strip hit information when triggered, and, together with theMPA, correlated clusters called stubs from the two sensors for useby the CMS Level-1 (L1) trigger system. Results from the firstprototype module consisting of a sensor and two SSA chips arepresented. The prototype module has been characterized at theFermilab Test Beam Facility using a 120 GeV proton beam

    Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker

    No full text
    The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to 7.5×10347.5 \times 10^{34} cm2^{-2}s1^{-1}. The increased luminosity during this High-Luminosity running phase\\ (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50μ50 \mu m ×  50μ \times \; 50 \mum and rectangular 100μ100 \mu m ×  25μ \times \; 25 \mum pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4μ\mum (2μ\mum) is obtained using the modules with 50μ50 \mu m ×  50μ \times \; 50 \mum (100μ100 \mu m ×  25μ \times \; 25 \mum) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq=5.3×1015\Phi_{\rm eq} = 5.3 \times 10^{15} cm2^{-2}, a resolution of 9.4μ\mum is achieved at a bias voltage of 800 V using a module with 50μ50 \mu m ×  50μ \times \; 50 \mum pixel size. All modules retain a hit efficiency in excess of 99\% after irradiation to fluences up to 2.1×10162.1 \times 10^{16} cm2^{-2}. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper.The Large Hadron Collider at CERN will undergo an upgrade inorder to increase its luminosity to7.5 × 1034^{34} cm2^{-2}s1^{-1}. The increased luminosityduring this High-Luminosity running phase, starting around 2029,means a higher rate of proton-proton interactions, hence a largerionizing dose and particle fluence for the detectors. The currenttracking system of the CMS experiment will be fully replaced inorder to cope with the new operating conditions. Prototype planarpixel sensors for the CMS Inner Tracker with square50 μm × 50 μm and rectangular100 μm × 25 μm pixels read out by theRD53A chip were characterized in the lab and at the DESY-II testbeamfacility in order to identify designs that meet the requirements ofCMS during the High-Luminosity running phase. A spatial resolutionof approximately 3.4 μm (2 μm) is obtained using themodules with 50 μm × 50 μm(100 μm × 25 μm) pixels at the optimalangle of incidence before irradiation. After irradiation to a 1 MeVneutron equivalent fluence ofΦeq_{eq} = 5.3 × 1015^{15} cm2^{-2}, a resolution of9.4 μm is achieved at a bias voltage of 800 V using a modulewith 50 μm × 50 μm pixel size. All modulesretain a hit efficiency in excess of 99% after irradiation tofluences up to 2.1 × 1016^{16} cm2^{-2}. Further studies ofthe electrical properties of the modules, especially crosstalk, arealso presented in this paper.The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to 7.5×10347.5 \times 10^{34} cm2^{-2}s1^{-1}. The increased luminosity during this High-Luminosity running phase (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50μ50 \mu m ×  50μ \times \; 50 \mum and rectangular 100μ100 \mu m ×  25μ \times \; 25 \mum pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4μ\mum (2μ\mum) is obtained using the modules with 50μ50 \mu m ×  50μ \times \; 50 \mum (100μ100 \mu m ×  25μ \times \; 25 \mum) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq=5.3×1015\Phi_{\rm eq} = 5.3 \times 10^{15} cm2^{-2}, a resolution of 9.4μ\mum is achieved at a bias voltage of 800 V using a module with 50μ50 \mu m ×  50μ \times \; 50 \mum pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1×10162.1 \times 10^{16} cm2^{-2}. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper

    Evaluation of HPK n+n^+-pp planar pixel sensors for the CMS Phase-2 upgrade

    No full text
    International audienceTo cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), sched-uled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determinedby the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 × 1034 cm−2 s−1 in the ultimate perfor-mance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluencecorresponding to a non-ionizing energy loss of up to Φeq = 3.5 × 1016 cm−2. This paper focuses on planar pixel sensor design andqualification up to a fluence of Φeq = 1.4 × 1016 cm−2.For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm(6”) wafers with an active thickness of 150 μm with pixel sizes of 100 × 25 μm2 and 50 × 50 μm2 manufactured by Hamamatsu.Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was anextensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly withROC4Sens readout chips. It demonstrates that multiple designs fulfill the requirements in terms of breakdown voltage, leakagecurrent and efficiency. The single point resolution for 50 × 50 μm2 pixels is measured as 4.0 μm for non-irradiated samples, and6.3 μm after irradiation to Φeq = 7.2 × 1015 cm−2

    Evaluation of HPK n+n^+-pp planar pixel sensors for the CMS Phase-2 upgrade

    No full text
    To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10~years with an instantaneous peak luminosity of up to 7.5×10347.5\times 10^{34}~cm2^{-2}s1^{-1} in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionizing energy loss of up to Φeq=3.5×1016\Phi_{\text{eq}} = 3.5\times 10^{16}~cm2^{-2}. This paper focuses on planar pixel sensor design and qualification up to a fluence of Φeq=1.4×1016\Phi_{\text{eq}} = 1.4\times 10^{16}~cm2^{-2}. For the development of appropriate planar pixel sensors an R\&D program was initiated, which includes n+n^+-pp sensors on 150 mm (6'') wafers with an active thickness of 150~μ\mum with pixel sizes of 100×25100\times 25~μ\mum2^2 and 50×5050\times 50~μ\mum2^2 manufactured by Hamamatsu Photonics K.K.\ (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfill the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50×5050\times 50~μ\mum2^2 pixels is measured as 4.0~μ\mum for non-irradiated samples, and 6.3~μ\mum after irradiation to Φeq=7.2×1015\Phi_{\text{eq}} = 7.2\times 10^{15}~cm2^{-2}.To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), sched- uled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 × 1034 cm−2 s−1 in the ultimate perfor- mance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionizing energy loss of up to Φeq = 3.5 × 1016 cm−2. This paper focuses on planar pixel sensor design and qualification up to a fluence of Φeq = 1.4 × 1016 cm−2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm (6”) wafers with an active thickness of 150 μm with pixel sizes of 100 × 25 μm2 and 50 × 50 μm2 manufactured by Hamamatsu. Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfill the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 × 50 μm2 pixels is measured as 4.0 μm for non-irradiated samples, and 6.3 μm after irradiation to Φeq = 7.2 × 1015 cm−2.To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 × 1034cm−2s−1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to Φeq= 3.5 × 1016cm−2. This paper focuses on planar pixel sensor design and qualification up to a fluence of Φeq = 1.4 × 1016cm−2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150mm (6”) wafers with an active thickness of 150µm with pixel sizes of 100×25 µm2 and 50×50 µm2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50×50 µm2 pixels is measured as 4.0µm for non-irradiated samples, and 6.3µm after irradiation to Φeq = 7.2 × 1015cm−2

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios
    corecore