4 research outputs found

    Ultra-fast Rotors for Molecular Machines and Functional Materials via Halogen Bonding: Crystals of 1,4-Bis(iodoethynyl)bicyclo 2.2.2 octane with Distinct Gigahertz Rotation at Two Sites

    Get PDF
    As a point of entry to investigate the potential of halogen-bonding interactions in the construction of functional materials and crystalline molecular machines, samples of 1,4-bis(iodoethynyl)bicyclo[2.2.2] octane (BIBCO) were synthesized and crystallized. Knowing that halogen-bonding interactions are common between electron-rich acetylenic carbons and electron-deficient iodines, it was expected that the BIBCO rotors would be an ideal platform to investigate the formation of a crystalline array of molecular rotors. Variable temperature single crystal X-ray crystallography established the presence of a halogen-bonded network, characterized by lamellarly ordered layers of crystallographically unique BIBCO rotors, which undergo a reversible monoclinic-to-triclinic phase transition at 110 K. In order to elucidate the rotational frequencies and the activation parameters of the BIBCO molecular rotors, variable-temperature H-1 wide-line and C-13 cross-polarization/magic-angle spinning solid-state NMR experiments were performed at temperatures between 27 and 290 K. Analysis of the H-1 spin-lattice relaxation and second moment as a function of temperature revealed two dynamic processes simultaneously present over the entire temperature range studied, with temperature-dependent rotational rates of k(rot) = 5.21 x 10(10) s(-1).exp(-1.48 kcal.mol(-1)/RT) and k(rot) = 8.00 x 10(10) s(-1).exp(-2.75 kcal.mol(-1)/RT). Impressively, these correspond to room temperature rotational rates of 4.3 and 0.8 GHz, respectively. Notably, the high-temperature plastic crystalline phase I of bicyclo[2.2.2]octane has a reported activation energy of 1.84 kcal.mol(-1) for rotation about the 1,4 axis, which is 24% larger than E-a = 1.48 kcal.mol(-1) for the same rotational motion of the fastest BIBCO rotor; yet, the BIBCO rotor has three fewer degrees of translational freedom and two fewer degrees of rotational freedom! Even more so, these rates represent some of the fastest engineered molecular machines, to date. The results of this study highlight the potential of halogen bonding as a valuable construction tool for the design and the synthesis of amphidynamic artificial molecular machines and suggest the potential of modulating properties that depend on the dielectric behavior of crystalline media

    Static Modulation Wave of Arrays of Halogen Interactions Transduced to a Hierarchy of Nanoscale Change Stimuli of Crystalline Rotors Dynamics

    Get PDF
    Here we present a study where what can be seen as a static modulation wave encompassing four successive arrays of interacting iodine atoms in cryst. 1,​4-​Bis((4\u27-​(iodoethynyl)​phenyl) ethynyl)​bicyclo[2,​2,​2]​octane rotors changes the structure from one-​half mol. to three-​and-​a-​half mols. in the asym. unit below a phase transition at 105 K.  The remarkable finding is that the total 1H spin-​lattice relaxation rate, T1-​1, of unprecedented complexity to date in mol. rotors, is the weighted sum of the relaxation rates of the four contributing rotors relaxation rates, each with distinguishable exchange frequencies reflecting Arrhenius parameters with different activation barriers (Ea) and attempt frequencies (τo-​1)​.  This allows us to show in tandem with rotor-​environment interaction energy calcns. how the dynamics of mol. rotors are able to decode structural information from their surroundings with remarkable nanoscale precision

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
    corecore