43 research outputs found

    Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension

    Full text link
    For a system with interacting quantum mechanical particles in a one-dimensional harmonic oscillator, a trial wavefunction with simple structure based on the solution of the corresponding two-particle system is suggested and tested numerically. With the inclusion of a scaling parameter for the distance between particles, at least for the very small systems tested here the ansatz gives a very good estimate of the ground state energy, with the error being of the order of ~1% of the gap to the first excited state

    Quantum Monte Carlo simulation for the conductance of one-dimensional quantum spin systems

    Full text link
    Recently, the stochastic series expansion (SSE) has been proposed as a powerful MC-method, which allows simulations at low TT for quantum-spin systems. We show that the SSE allows to compute the magnetic conductance for various one-dimensional spin systems without further approximations. We consider various modifications of the anisotropic Heisenberg chain. We recover the Kane-Fisher scaling for one impurity in a Luttinger-liquid and study the influence of non-interacting leads for the conductance of an interacting system.Comment: 8 pages, 9 figure

    Mean-field theory of Bose-Fermi mixtures in optical lattices

    Full text link
    We determine the phase diagram of a mixture of ultracold bosons and polarized fermions placed in an optical lattice using mean field theory. In the limit of strong atom-atom interactions, there exist quantum phases that involve pairing of fermions with one or more bosons, or bosonic holes, respectively. We obtain the analytic form of the phase boundaries separating these composite fermion phases from the bosonic superfluid coexisting with Fermi liquid. We compare the results with numerical simulations and discuss their validity and relevance for current experiments.Comment: 4 pages, 2 eps figures, new section on experimental requirements and some technical details adde

    One-dimensional phase transitions in a two-dimensional optical lattice

    Full text link
    A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.Comment: 14 pages, 8 figure

    Dynamical 1/N approach to time-dependent currents through quantum dots

    Full text link
    A systematic truncation of the many-body Hilbert space is implemented to study how electrons in a quantum dot attached to conducting leads respond to time-dependent biases. The method, which we call the dynamical 1/N approach, is first tested in the most unfavorable case, the case of spinless fermions (N=1). We recover the expected behavior, including transient ringing of the current in response to an abrupt change of bias. We then apply the approach to the physical case of spinning electrons, N=2, in the Kondo regime for the case of infinite intradot Coulomb repulsion. In agreement with previous calculations based on the non-crossing approximation (NCA), we find current oscillations associated with transitions between Kondo resonances situated at the Fermi levels of each lead. We show that this behavior persists for a more realistic model of semiconducting quantum dots in which the Coulomb repulsion is finite.Comment: 18 pages, 7 eps figures, discussion extended for spinless electrons and typo

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    Dynamic correlation functions in one-dimensional quasi-condensates

    Full text link
    We calculate the static and dynamic single-particle correlation functions in one-dimensional (1D) trapped Bose gases and discuss experimental measurements that can directly probe such correlation functions. Using a quantized hydrodynamic theory for the low energy excitations, we calculate both the static and dynamic single-particle correlation functions for a 1D Bose gas that is a phase-fluctuating quasi-condensate. For the static (equal-time) correlation function, our approximations and results are equivalent to those of Petrov, Shlyapnikov and Walraven. The Fourier transform of the static single-particle correlation function gives the momentum distribution, which can be measured using Doppler-sensitive Bragg scattering experiments on a highly elongated Bose gas. We show how a two-photon Raman out-coupling experiment can measure the characteristic features of the dynamic or time-dependent single-particle correlation function of a 1D Bose quasi-condensate.Comment: 19 pages, 4 figures; submitted to Phys. Rev.

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure

    Easy-axis ferromagnetic chain on a metallic surface

    No full text
    10.1088/0953-8984/25/9/094008Journal of Physics Condensed Matter259-JCOM
    corecore