62,774 research outputs found

    Why not Merge the International Monetary Fund (IMF) with the International Bank for Reconstruction and Development (World Bank)

    Get PDF
    Motivation: Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state. CECT captures large numbers of macromolecular complexes of highly diverse structures and abundances. However, the structural complexity and imaging limits complicate the systematic de novo structural recovery and recognition of these macromolecular complexes. Efficient and accurate reference-free subtomogram averaging and classification represent the most critical tasks for such analysis. Existing subtomogram alignment based methods are prone to the missing wedge effects and low signal-to-noise ratio (SNR). Moreover, existing maximum-likelihood based methods rely on integration operations, which are in principle computationally infeasible for accurate calculation. Results: Built on existing works, we propose an integrated method, Fast Alignment Maximum Likelihood method (FAML), which uses fast subtomogram alignment to sample sub-optimal rigid transformations. The transformations are then used to approximate integrals for maximum-likelihood update of subtomogram averages through expectation-maximization algorithm. Our tests on simulated and experimental subtomograms showed that, compared to our previously developed fast alignment method (FA), FAML is significantly more robust to noise and missing wedge effects with moderate increases of computation cost. Besides, FAML performs well with significantly fewer input subtomograms when the FA method fails. Therefore, FAML can serve as a key component for improved construction of initial structuralmodels frommacromolecules captured by CECT

    SDF1 Gene Variation Is Associated with Circulating SDF1 alpha Level and Endothelial Progenitor Cell Number-The Bruneck Study

    Get PDF
    BACKGROUND: Stromal cell-derived factor-1 (SDF1) and its receptor CXC chemokine receptor 4 (CXCR4) play a critical role in progenitor cell homing, mobilization and differentiation. It would be interesting to assess the predictive value of SDF-1alpha level for EPC number, and to ascertain whether there is a relationship between SDF1 gene variation, plasma SDF-1alpha level, and the number and function of circulating EPCs. We also tested whether EPC number and function was related to CXCR4 gene variation. METHODOLOGY AND PRINCIPAL FINDINGS: We genotyped a cohort of individuals who participated in the Bruneck Study for single nucleotide polymorphisms (SNPs) in the SDF1 and CXCR4 genes, and measured blood SDF1alpha level as well as EPC number and function. SDF1alpha levels were correlated with age, gender, alcohol consumption, circulating reticulocyte numbers, and concentrations of matrix metalloproteinase-9, C-reactive protein, cystatin C, fibrinogen and homocytein. In blood samples taken in 2005, EPC number was inversely associated with SDF1alpha level (p<0.001). EPC number in 2005 was also inversely associated with SDF1alpha level in 2000 (p = 0.009), suggesting a predictive value of plasma SDF1alpha level for EPC number. There was an association between the SDF1 gene rs2297630 SNP A/A genotype, increased SDF1alpha level (p = 0.002) and lower EPC number (p = 0.006). CONCLUSIONS: Our data indicate that a SDF1 gene variation (rs2297630) has an influence on SDF1alpha level and circulating EPC number, and that plasma SDF1alpha level is a predictor of EPC number

    Trust under the prospect theory and quasi-hyperbolic preferences: a field experiment in Vietnam

    Get PDF
    We conduct a field experiment in Vietnamese villages to explore the effect of the prospect theory and of quasi-hyperbolic time preferences parameters on trust and trustworthiness. We find that risk aversion, loss aversion and present bias do not influence trustors’ decisions, but a higher time discounting increases the amount sent in the South of Vietnam and probability weighting decreases it in the North. If time discounting and loss aversion do not influence trustworthiness, we show that more risk averse and less present biased trustees return a higher share of their wealth to the trustors. These results suggest that adopting another perspective than the expected utility theory and the exponential discounting approach of time preferences enables to uncover some channels by which risk and intertemporal time preferences influence trusting behavior in societies

    Pseudospin symmetry in supersymmetric quantum mechanics: Schr\"odinger equations

    Full text link
    The origin of pseudospin symmetry (PSS) and its breaking mechanism are explored by combining supersymmetry (SUSY) quantum mechanics, perturbation theory, and the similarity renormalization group (SRG) method. The Schr\"odinger equation is taken as an example, corresponding to the lowest-order approximation in transforming a Dirac equation into a diagonal form by using the SRG. It is shown that while the spin-symmetry-conserving term appears in the single-particle Hamiltonian HH, the PSS-conserving term appears naturally in its SUSY partner Hamiltonian H~\tilde{H}. The eigenstates of Hamiltonians HH and H~\tilde{H} are exactly one-to-one identical except for the so-called intruder states. In such a way, the origin of PSS deeply hidden in HH can be traced in its SUSY partner Hamiltonian H~\tilde{H}. The perturbative nature of PSS in the present potential without spin-orbit term is demonstrated by the perturbation calculations, and the PSS-breaking term can be regarded as a very small perturbation on the exact PSS limits. A general tendency that the pseudospin-orbit splittings become smaller with increasing single-particle energies can also be interpreted in an explicit way.Comment: 31 pages, 11 figures, 2 table

    Disorder influences the quantum critical transport at a superconductor-to-insulator transition

    Get PDF
    We isolated flux disorder effects on the transport at the critical point of the quantum magnetic field tuned superconductor-to-insulator transition (BSIT). The experiments employed films patterned into geometrically disordered hexagonal arrays. Spatial variations in the flux per unit cell, which grow in a perpendicular magnetic field, constitute flux disorder. The growth of flux disorder with magnetic field limited the number of BSITs exhibited by a single film due to flux matching effects. The critical metallic resistance at successive BSITs grew with flux disorder contrary to predictions of its universality. These results open the door for controlled studies of disorder effects on the universality class of an ubiquitous quantum phase transition

    Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene

    Full text link
    We demonstrate theoretically how local strains in graphene can be tailored to generate a valley polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K') show different Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K' valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure
    • …
    corecore