288 research outputs found

    Superconducting molybdenum-rhenium electrodes for single-molecule transport studies

    Full text link
    We demonstrate that electronic transport through single molecules or molecular ensembles, commonly based on gold (Au) electrodes, can be extended to superconducting electrodes by combining gold with molybdenum-rhenium (MoRe). This combination induces proximity-effect superconductivity in the gold to temperatures of at least 4.6 Kelvin and magnetic fields of 6 Tesla, improving on previously reported aluminum based superconducting nanojunctions. As a proof of concept, we show three-terminal superconductive transport measurements through an individual Fe4_4 single-molecule magnet.Comment: 4 pages, 3 figure

    Determinants of non attendance to mammography program in a region with high voluntary health insurance coverage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High participation rates are needed to ensure that breast cancer screening programs effectively reduce mortality. We identified the determinants of non-participation in a public breast cancer screening program.</p> <p>Methods</p> <p>In this case-control study, 274 women aged 50 to 64 years included in a population-based mammography screening program were personally interviewed. Socio-demographic characteristics, health beliefs, health service utilization, insurance coverage, prior mammography and other preventive activities were examined.</p> <p>Results</p> <p>Of the 192 cases and 194 controls contacted, 101 and 173, respectively, were subsequently interviewed. Factors related to non-participation in the breast cancer screening program included higher education (odds ratio [OR] = 5.28; 95% confidence interval [CI95%] = 1.57–17.68), annual dental checks-ups (OR = 1.81; CI95%1.08–3.03), prior mammography at a private health center (OR = 7.27; CI95% 3.97–13.32), gynecologist recommendation of mammography (OR = 2.2; CI95%1.3–3.8), number of visits to a gynecologist (median visits by cases = 1.2, versus controls = 0.92, P = 0.001), and supplemental private insurance (OR = 5.62; CI95% = 3.28–9.6). Among women who had not received a prior mammogram or who had done so at a public center, perceived barriers were the main factors related to non-participation. Among women who had previously received mammograms at a private center, supplemental private health insurance also influenced non-participation. Benign breast symptoms increased the likelihood of participation.</p> <p>Conclusion</p> <p>Our data indicate that factors related to the type of insurance coverage (such as prior mammography at a private health center and supplemental private insurance) influenced non-participation in the screening program.</p

    Climate and colonialism

    Get PDF
    Recent years have seen a growth in scholarship on the intertwined histories of climate, science and European imperialism. Scholarship has focused both on how the material realities of climate shaped colonial enterprises, and on how ideas about climate informed imperial ideologies. Historians have shown how European expansion was justified by its protagonists with theories of racial superiority, which were often closely tied to ideas of climatic determinism. Meanwhile, the colonial spaces established by European powers offered novel ‘laboratories’ where ideas about acclimatisation and climatic improvement could be tested on the ground. While historical scholarship has focused on how powerful ideas of climate informed imperial projects, emerging scholarship in environmental history, history of science and historical geography focuses instead on the material and cognitive practices by which the climates of colonial spaces were made known and dealt with in fields such as forestry, agriculture and human health. These heretofore rather disparate areas of historical research carry great contemporary relevance of studies of how climates and their changes have been understood, debated and adapted to in the past

    Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    Get PDF
    Background: The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results: A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells.Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells. Numerous genes encoding transporters for carbohydrates and organic alcohols and acids were down-regulated in old cells only. Conclusion: Network analysis revealed very different transcriptional activities during the lag period in old and young cells. Rejuvenation seems to take place during exponential growth by replicative dilution of old cellular components

    Phosphorene: Fabrication, Properties and Applications

    Full text link
    Phosphorene, the single- or few-layer form of black phosphorus, was recently rediscovered as a twodimensional layered material holding great promise for applications in electronics and optoelectronics. Research into its fundamental properties and device applications has since seen exponential growth. In this Perspective, we review recent progress in phosphorene research, touching upon topics on fabrication, properties, and applications; we also discuss challenges and future research directions. We highlight the intrinsically anisotropic electronic, transport, optoelectronic, thermoelectric, and mechanical properties of phosphorene resulting from its puckered structure in contrast to those of graphene and transition-metal dichalcogenides. The facile fabrication and novel properties of phosphorene have inspired design and demonstration of new nanodevices; however, further progress hinges on resolutions to technical obstructions like surface degradation effects and non-scalable fabrication techniques. We also briefly describe the latest developments of more sophisticated design concepts and implementation schemes that address some of the challenges in phosphorene research. It is expected that this fascinating material will continue to offer tremendous opportunities for research and development for the foreseeable future.Comment: invited perspective for JPC
    • 

    corecore