169,402 research outputs found

    Single-Walled Carbon Nanotubes as Shadow Masks for Nanogap Fabrication

    Full text link
    We describe a technique for fabricating nanometer-scale gaps in Pt wires on insulating substrates, using individual single-walled carbon nanotubes as shadow masks during metal deposition. More than 80% of the devices display current-voltage dependencies characteristic of direct electron tunneling. Fits to the current-voltage data yield gap widths in the 0.8-2.3 nm range for these devices, dimensions that are well suited for single-molecule transport measurements

    Balanced electronic detection of displacement in nanoelectromechanical systems

    Get PDF
    We describe a broadband radio frequency balanced bridge technique for electronic detection of displacement in nanoelectromechanical systems (NEMS). With its two-port actuation-detection configuration, this approach generates a background-nulled electromotive force in a dc magnetic field that is proportional to the displacement of the NEMS resonator. We demonstrate the effectiveness of the technique by detecting small impedance changes originating from NEMS electromechanical resonances that are accompanied by large static background impedances at very high frequencies. This technique allows the study of important experimental systems such as doped semiconductor NEMS and may provide benefits to other high frequency displacement transduction circuits

    Unstable Slope Management Program

    Get PDF
    INE/AUTC 11.1

    Solutions of special asymptotics to the Einstein constraint equations

    Full text link
    We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear in Class. Quantum Gra

    Monocrystalline silicon carbide nanoelectromechanical systems

    Get PDF
    SiC is an extremely promising material for nanoelectromechanical systems given its large Young's modulus and robust surface properties. We have patterned nanometer scale electromechanical resonators from single-crystal 3C-SiC layers grown epitaxially upon Si substrates. A surface nanomachining process is described that involves electron beam lithography followed by dry anisotropic and selective electron cyclotron resonance plasma etching steps. Measurements on a representative family of the resulting devices demonstrate that, for a given geometry, nanometer-scale SiC resonators are capable of yielding substantially higher frequencies than GaAs and Si resonators
    • …
    corecore