59 research outputs found

    Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)

    Get PDF
    Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C-29-C-36) and steranes (C-27-C-29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain)EUEuropean Commission [FP7-ENV-2011, 282845, FP7-534 ENV-2012, 308392]MINECO project INTERCARBON [CGL2016-78937-R]info:eu-repo/semantics/publishedVersio

    Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: application of Py-GC/MS

    Get PDF
    The anaerobic digestion process of swine manure was studied when char was used as supplement for improving performance. The use of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was proposed for assessing the organic matter degradation. The assessment on biogas production was carried out using samples of swine manure (SM) supplemented with char in one case and pre-treated by microwave irradiation in the other. This experimental set-up allows for the comparison of the biological degradation observed under these two different configurations and therefore aids in understanding the effect of char particles on the process. Results showed similar performance for both systems, with an average improvement of 39% being obtained in methane production when compared to the single digestion of SM. The analysis of digestate samples by Fourier transform infrared (FTIR) spectroscopy and Py-GC/MS showed improved degradation of proteins, with the Py-GC/MS technique also capable of identifying an increase in microbial-derived material when char was added, therefore highlighting the relevant role of carbon conductive particles on biological systems. Py-GC/MS along with the use of FTIR spectroscopy has proven to be useful tools when evaluating anaerobic digestion

    Biological and physico-chemical processes influence cutin and suberin biomarker distribution in two Mediterranean forest soil profiles

    No full text
    Recent investigations have shown macromolecules, such as cutins, and suberins as effective markers for above and belowground plant tissues. These biopolyesters contain structural units specific for different litter components and for root biomass. The aim of this work was to understand the fate of plant organic matter (OM) in Mediterranean forest soils by evaluating the incorporation of cutin and suberin by measuring specific biomarkers. Soil and plant tissue (leaves, woods and roots) samples were collected in two mixed Mediterranean forests of Quercus ilex (holm oak) in costal stands in Tuscany (central Italy), which have different ecological and edaphic features. Ester-bound lipids of mineral and organic horizons and the overlying vegetation were analysed using the saponification method in order to depolymerise cutins and suberins and release their specific structural units. Cutin and suberin specific aliphatic monomers were identified and quantified by gas chromatographic techniques. The distribution of cutin and suberin specific monomers in plant tissue suggested that mid-chain hydroxy acids can be used as leaf-specific markers and α,ω-alkanedioic acids and ωC18:1 as root-specific markers. Differences in the distributions of biomarkers specific for above and belowground plant-derived OM was observed in the two types of soils, suggesting contrasted degradation, stabilisation and transport mechanisms that may be related to soil physico-chemical properties. The acidic and dry soil appeared to inhibit microbial activity, favouring stabilization of leaf-derived compounds, while, in the more fertile soil, protection within aggregates appeared to better preserve root-derived compounds. © 2011 Springer Science+Business Media B.V

    How do earthworms affect organic matter decomposition in the presence of clay-sized minerals ?

    No full text
    Clay-sized soil minerals are known to protect organic carbon (OC) from mineralisation by formation of organomineral associations limiting its availability to microorganisms. The impact of soil fauna on these processes is poorly known. The aim of this study was to investigate the effect of earthworms on organic matter (OM) decomposition and association with minerals during a laboratory experiment. We used a model system consisting of fresh OM incubated with and without epigeic earthworms (Eisenia andrei and foetida) in presence of different types and amounts of phyllosilicates (kaolinite, montmorillonite) and an iron oxide (goethite) and combinations of these minerals. Our experimental setup included a high OM:mineral ratio to represent the soil-litter interphase. We monitored OC mineralisation during 196 days. Additionally, we investigated physicochemical parameters and chemical OM characteristics of decomposition products by determination of water-soluble OC (WSOC) and acquisition of solid-state C-13 NMR spectra. We also analysed microscale organisation of the organomineral associations produced with and without earthworms by transmission electron microscopy (TEM). Earthworms enhanced OC mineralisation in all treatments. They also led to greater reductions of OC emissions in the presence of minerals as compared to the mineral-free control, depending on the type and amount of minerals added. The presence of earthworms affected microbial biomass, the concentration of WSOC and increased the contribution of aromatic compounds to OM decomposition products. Microscale analyses by TEM showed that earthworms favoured association of minerals with partly degraded OM along with completely degraded material, while in absence of earthworms only completely degraded OM was associated with minerals. We conclude that earthworms impact OM decomposition through (1) their effect on microbial biomass and the physicochemical parameters of microbial habitat and (2) the formation of OM associations by changing the OM types associated to minerals and possibly by creating closer association of partly degraded OM and iron oxides. The stability of these associations remains to be investigated

    Transformation of buffalo manure by composting or vermicomposting to rehabilitate degraded tropical soils

    No full text
    The addition of composted buffalo manure may lead to qualitative and quantitative improvement of the organic matter content of degraded tropical agricultural soils in Northern Vietnam. The objectives of this study were to follow the biochemical changes occurring during composting of buffalo manure with and without earthworms during 3 months and to study the effect of the end products (compost and vermicompost) on soil biochemical parameters and plant growth after two months of incubation under controlled conditions in an open pot experiment. Our conceptual approach included characterisation of organic matter of the two composts before and after addition to soil by elemental, isotopic analysis and analytical pyrolysis and comparison with conventional fertilisation. We also analysed for lignin content and composition. Our results showed that composting in the presence of earthworms led to stronger transformation of buffalo manure than regular composting. Vermicompost was enriched in N-containing compounds and depleted in polysaccharides. It further contained stronger modified lignin compared to regular compost. In the bulk soil, the amendment of compost and vermicompost led to significant modification of the soil organic matter after 2 months of exposure to natural weather conditions. The lignin component of SOM was unaffected whatever the origin of the organic amendment. Compost and vermicompost amendments both enhanced aggregation and increased the amount of organic matter in water stable aggregates. However, vermicompost is preferable to compost due to its beneficial effect on plant growth, while having similar positive effects on quantity and quality of SOM

    Heat-proof carbon compound

    No full text
    • 

    corecore