558 research outputs found

    Quantum process tomography via completely positive and trace-preserving projection

    Get PDF
    We present an algorithm for projecting superoperators onto the set of completely positive, trace-preserving maps. When combined with gradient descent of a cost function, the procedure results in an algorithm for quantum process tomography: finding the quantum process that best fits a set of sufficient observations. We compare the performance of our algorithm to the diluted iterative algorithm as well as second-order solvers interfaced with the popular CVX package for MATLAB, and find it to be significantly faster and more accurate while guaranteeing a physical estimate.Comment: 13pp, 8 fig

    Economic evaluations of interventions to optimize medication use in older adults with polypharmacy and multimorbidity: A systematic review

    Get PDF
    Purpose: To conduct a systematic review of the economic impact of interventions intended at optimizing medication use in older adults with multimorbidity and polypharmacy. Methods: We searched Ovid-Medline, Embase, CINAHL, Ageline, Cochrane, and Web of Science, for articles published between 2004 and 2020 that studied older adults with multi-morbidity and polypharmacy. The intervention studied had to be aimed at optimizing medication use and present results on costs. Results: Out of 3,871 studies identified by the search strategy, eleven studies were included. The interventions involved different provider types, with a majority described as a multidisciplinary team involving a pharmacist and a general practitioner, in the decision-making process. Interventions were generally associated with a reduction in medication expenditure. The benefits of the intervention in terms of clinical outcomes remain limited. Five studies were cost-benefit analyses, which had a net benefit that was either null or positive. Cost-utility and cost-effectiveness analyses resulted in incremental cost-effectiveness ratios that were generally within the willingness-to-pay thresholds of the countries in which the studies were conducted. However, the quality of the studies was generally low. Omission of key cost elements of economic evaluations, including intervention cost and payer perspective, limited interpretability. Conclusion: Interventions to optimize medication use may provide benefits that outweigh their implementation costs, but the evidence remains limited. There is a need to identify and address barriers to the scaling-up of such interventions, starting with the current incentive structures for pharmacists, physicians, and patients

    The Prevalence of STIV c92-Like Proteins in Acidic Thermal Environments

    Get PDF
    A new type of viral-induced lysis system has recently been discovered for two unrelated archaeal viruses, STIV and SIRV2. Prior to the lysis of the infected host cell, unique pyramid-like lysis structures are formed on the cell surface by the protrusion of the underlying cell membrane through the overlying external S-layer. It is through these pyramid structures that assembled virions are released during lysis. The STIV viral protein c92 is responsible for the formation of these lysis structures. We searched for c92-like proteins in viral sequences present in multiple viral and cellular metagenomic libraries from Yellowstone National Park acidic hot spring environments. Phylogenetic analysis of these proteins demonstrates that, although c92-like proteins are detected in these environments, some are quite divergent and may represent new viral families. We hypothesize that this new viral lysis system is common within diverse archaeal viral populations found within acidic hot springs

    Reproducibility, bioinformatic analysis and power of the SAGE method to evaluate changes in transcriptome

    Get PDF
    The serial analysis of gene expression (SAGE) method is used to study global gene expression in cells or tissues in various experimental conditions. However, its reproducibility has not yet been definitively assessed. In this study, we have evaluated the reproducibility of the SAGE method and identified the factors that affect it. The determination coefficient (R(2)) for the reproducibility of SAGE is 0.96. However, there are some factors that can affect the reproducibility of SAGE, such as the replication of concatemers and ditags, the number of sequenced tags and double PCR amplification of ditags. Thus, corrections for these factors must be made to ensure the reproducibility and accuracy of SAGE results. A bioinformatic analysis of SAGE data is also presented in order to eliminate these artifacts. Finally, the current study shows that increasing the number of sequenced tags improves the power of the method to detect transcripts and their regulation by experimental conditions

    Host-linked soil viral ecology along a permafrost thaw gradient

    Get PDF
    Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1,2,3,4,5,6,7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8,9,10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling

    Towards an IT-based Planning Process Alignment: Integrated Route and Location Planning for Small Package Shippers

    Get PDF
    To increase the efficiency of delivery operations in small package shipping (SPS), numerous optimization models for routeand location planning decisions have been proposed. This operations research view of defining independent problems hastwo major shortcomings: First, most models from literature neglect crucial real-world characteristics, thus making themuseless for small package shippers. Second, business processes for strategic decision making are not well-structured in mostSPS companies and significant cost savings could be generated by an IT-based support infrastructure integrating decisionmaking and planning across the mutually dependent layers of strategic, tactical and operational planning. We present anintegrated planning framework that combines an intelligent data analysis tool, which identifies delivery patterns and changesin customer demand, with location and route planning tools. Our planning approaches extend standard Location Routing andVehicle Routing models by crucial, practically relevant characteristics like the existence of subcontractors on both decisionlevels and the implicit consideration of driver familiarity in route planning

    Potential Virus-Mediated Nitrogen Cycling in Oxygen-Depleted Oceanic Waters

    Get PDF
    Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models

    Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gazitua, M. C., Vik, D. R., Roux, S., Gregory, A. C., Bolduc, B., Widner, B., Mulholland, M. R., Hallam, S. J., Ulloa, O., & Sullivan, M. B. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. Isme Journal, (2020), doi:10.1038/s41396-020-00825-6.Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.We thank Sullivan Lab members and Heather Maughan for comments on the paper, Bess Ward for her contribution in the N-cycle context of our story, Kurt Hanselmann for his assistance in the calculations of the Gibbs-free energies, and the scientific party and crew of the R/V Atlantis (grant OCE-1356056 to MRM) for the sampling opportunity and support at sea. This work was funded in part by awards from the Agouron Institute to OU and MBS, a Gordon and Betty Moore Foundation Investigator Award (#3790) and NSF Biological Oceanography Awards (#1536989 and #1829831) to MBS, and the Millennium Science Initiative (grant ICN12_019-IMO) to OU. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231

    efam: an expanded, metaproteome-supported HMM profile database of viral protein families

    Get PDF
    Motivation: Viruses infect, reprogram and kill microbes, leading to profound ecosystem consequences, from elemental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral sequences in databases. Results: Here, we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240 311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, panecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from 'conservative' to 'eXtremely Conservative' resulted in 37 841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by similar to 24% on average (up to similar to 42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-database annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any ecosystem
    corecore