18,821 research outputs found

    Nonequilibrium Phase Transitions in Directed Small-World Networks

    Full text link
    Many social, biological, and economic systems can be approached by complex networks of interacting units. The behaviour of several models on small-world networks has recently been studied. These models are expected to capture the essential features of the complex processes taking place on real networks like disease spreading, formation of public opinion, distribution of wealth, etc. In many of these systems relations are directed, in the sense that links only act in one direction (outwards or inwards). We investigate the effect of directed links on the behaviour of a simple spin-like model evolving on a small-world network. We show that directed networks may lead to a highly nontrivial phase diagram including first and second-order phase transitions out of equilibrium.Comment: 4 pages, RevTeX format, 4 postscript figs, uses eps

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    Study of star-forming galaxies in SDSS up to redshift 0.4: I. Metallicity evolution

    Full text link
    The chemical composition of the gas in galaxies versus cosmic time provides a very important tool for understanding galaxy evolution. Although there are many studies at high redshift, they are rather scarce at lower redshifts. However, low redshift studies can provide important clues about the evolution of galaxies, furnishing the required link between local and high redshift universe. In this work we focus on the metallicity of the gas of star-forming galaxies at low redshift, looking for signs of chemical evolution. To analyze the metallicity contents star-forming galaxies of similar luminosities and masses at different redshifts. With this purpose, we present a study of the metallicity of relatively massive (log(M_star/M_sun)>10.5) star forming galaxies from SDSS--DR5 (Sloan Digital Sky Survey--Data Release 5), using different redshift intervals from 0.04 to 0.4. We used data processed with the STARLIGHT spectral synthesis code, correcting the fluxes for dust extinction, estimating metallicities using the R_23 method, and segregating the samples with respect to the value of the [NII]6583/[OII]3727 line ratio in order to break the R_23 degeneracy selecting the upper branch. We analyze the luminosity and mass-metallicity relations, and the effect of the Sloan fiber diameter looking for possible biases. By dividing our redshift samples in intervals of similar magnitude and comparing them, significant signs of metallicity evolution are found. Metallicity correlates inversely with redshift: from redshift 0 to 0.4 a decrement of ~0.1 dex in 12+log(O/H) is found.Comment: 11 pages, 9 figures, Accepted for publication in A&

    Evolution and excitation conditions of outflows in high-mass star-forming regions

    Full text link
    Theoretical models suggest that massive stars form via disk-mediated accretion, with bipolar outflows playing a fundamental role. A recent study toward massive molecular outflows has revealed a decrease of the SiO line intensity as the object evolves. The present study aims at characterizing the variation of the molecular outflow properties with time, and at studying the SiO excitation conditions in outflows associated with massive YSOs. We used the IRAM30m telescope to map 14 massive star-forming regions in the SiO(2-1), SiO(5-4) and HCO+(1-0) outflow lines, and in several dense gas and hot core tracers. Hi-GAL data was used to improve the spectral energy distributions and the L/M ratio, which is believed to be a good indicator of the evolutionary stage of the YSO. We detect SiO and HCO+ outflow emission in all the sources, and bipolar structures in six of them. The outflow parameters are similar to those found toward other massive YSOs. We find an increase of the HCO+ outflow energetics as the object evolve, and a decrease of the SiO abundance with time, from 10^(-8) to 10^(-9). The SiO(5-4) to (2-1) line ratio is found to be low at the ambient gas velocity, and increases as we move to high velocities, indicating that the excitation conditions of the SiO change with the velocity of the gas (with larger densities and/or temperatures for the high-velocity gas component). The properties of the SiO and HCO+ outflow emission suggest a scenario in which SiO is largely enhanced in the first evolutionary stages, probably due to strong shocks produced by the protostellar jet. As the object evolves, the power of the jet would decrease and so does the SiO abundance. During this process, however, the material surrounding the protostar would have been been swept up by the jet, and the outflow activity, traced by entrained molecular material (HCO+), would increase with time.Comment: 31 pages, 10 figures and 5 tables (plus 2 figures and 3 tables in the appendix). Accepted for publication in A&A. [Abstract modified to fit the arXiv requirements.

    Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling.

    Get PDF
    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment
    corecore